ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 Unicode version

Theorem nfeu1 2065
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1  |-  F/ x E! x ph

Proof of Theorem nfeu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2057 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 nfa1 1564 . . 3  |-  F/ x A. x ( ph  <->  x  =  y )
32nfex 1660 . 2  |-  F/ x E. y A. x (
ph 
<->  x  =  y )
41, 3nfxfr 1497 1  |-  F/ x E! x ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   F/wnf 1483   E.wex 1515   E!weu 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-eu 2057
This theorem is referenced by:  nfmo1  2066  moaneu  2130  nfreu1  2678  eusv2i  4502  eusv2nf  4503  iota2  5261  sniota  5262  fv3  5599  tz6.12c  5606  eusvobj1  5931
  Copyright terms: Public domain W3C validator