ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 Unicode version

Theorem nfeu1 2053
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1  |-  F/ x E! x ph

Proof of Theorem nfeu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2045 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 nfa1 1552 . . 3  |-  F/ x A. x ( ph  <->  x  =  y )
32nfex 1648 . 2  |-  F/ x E. y A. x (
ph 
<->  x  =  y )
41, 3nfxfr 1485 1  |-  F/ x E! x ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   F/wnf 1471   E.wex 1503   E!weu 2042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-eu 2045
This theorem is referenced by:  nfmo1  2054  moaneu  2118  nfreu1  2666  eusv2i  4486  eusv2nf  4487  iota2  5244  sniota  5245  fv3  5577  tz6.12c  5584  eusvobj1  5905
  Copyright terms: Public domain W3C validator