ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 Unicode version

Theorem nfeu1 2025
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1  |-  F/ x E! x ph

Proof of Theorem nfeu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2017 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 nfa1 1529 . . 3  |-  F/ x A. x ( ph  <->  x  =  y )
32nfex 1625 . 2  |-  F/ x E. y A. x (
ph 
<->  x  =  y )
41, 3nfxfr 1462 1  |-  F/ x E! x ph
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341   F/wnf 1448   E.wex 1480   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017
This theorem is referenced by:  nfmo1  2026  moaneu  2090  nfreu1  2637  eusv2i  4433  eusv2nf  4434  iota2  5179  sniota  5180  fv3  5509  tz6.12c  5516  eusvobj1  5829
  Copyright terms: Public domain W3C validator