ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 Unicode version

Theorem nfeu1 2066
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1  |-  F/ x E! x ph

Proof of Theorem nfeu1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2058 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 nfa1 1565 . . 3  |-  F/ x A. x ( ph  <->  x  =  y )
32nfex 1661 . 2  |-  F/ x E. y A. x (
ph 
<->  x  =  y )
41, 3nfxfr 1498 1  |-  F/ x E! x ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   F/wnf 1484   E.wex 1516   E!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058
This theorem is referenced by:  nfmo1  2067  moaneu  2132  nfreu1  2680  eusv2i  4520  eusv2nf  4521  iota2  5280  sniota  5281  fv3  5622  tz6.12c  5629  eusvobj1  5954
  Copyright terms: Public domain W3C validator