ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota2df Unicode version

Theorem riota2df 5854
Description: A deduction version of riota2f 5855. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2df.1  |-  F/ x ph
riota2df.2  |-  ( ph  -> 
F/_ x B )
riota2df.3  |-  ( ph  ->  F/ x ch )
riota2df.4  |-  ( ph  ->  B  e.  A )
riota2df.5  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
riota2df  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  ( ch  <->  ( iota_ x  e.  A  ps )  =  B ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    ch( x)    B( x)

Proof of Theorem riota2df
StepHypRef Expression
1 riota2df.4 . . . 4  |-  ( ph  ->  B  e.  A )
21adantr 276 . . 3  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  B  e.  A )
3 simpr 110 . . . 4  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  E! x  e.  A  ps )
4 df-reu 2462 . . . 4  |-  ( E! x  e.  A  ps  <->  E! x ( x  e.  A  /\  ps )
)
53, 4sylib 122 . . 3  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  E! x ( x  e.  A  /\  ps ) )
6 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  E! x  e.  A  ps )  /\  x  =  B )  ->  x  =  B )
72adantr 276 . . . . . 6  |-  ( ( ( ph  /\  E! x  e.  A  ps )  /\  x  =  B )  ->  B  e.  A )
86, 7eqeltrd 2254 . . . . 5  |-  ( ( ( ph  /\  E! x  e.  A  ps )  /\  x  =  B )  ->  x  e.  A )
98biantrurd 305 . . . 4  |-  ( ( ( ph  /\  E! x  e.  A  ps )  /\  x  =  B )  ->  ( ps  <->  ( x  e.  A  /\  ps ) ) )
10 riota2df.5 . . . . 5  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
1110adantlr 477 . . . 4  |-  ( ( ( ph  /\  E! x  e.  A  ps )  /\  x  =  B )  ->  ( ps  <->  ch ) )
129, 11bitr3d 190 . . 3  |-  ( ( ( ph  /\  E! x  e.  A  ps )  /\  x  =  B )  ->  ( (
x  e.  A  /\  ps )  <->  ch ) )
13 riota2df.1 . . . 4  |-  F/ x ph
14 nfreu1 2649 . . . 4  |-  F/ x E! x  e.  A  ps
1513, 14nfan 1565 . . 3  |-  F/ x
( ph  /\  E! x  e.  A  ps )
16 riota2df.3 . . . 4  |-  ( ph  ->  F/ x ch )
1716adantr 276 . . 3  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  F/ x ch )
18 riota2df.2 . . . 4  |-  ( ph  -> 
F/_ x B )
1918adantr 276 . . 3  |-  ( (
ph  /\  E! x  e.  A  ps )  -> 
F/_ x B )
202, 5, 12, 15, 17, 19iota2df 5204 . 2  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  ( ch  <->  ( iota x ( x  e.  A  /\  ps )
)  =  B ) )
21 df-riota 5834 . . 3  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
2221eqeq1i 2185 . 2  |-  ( (
iota_ x  e.  A  ps )  =  B  <->  ( iota x ( x  e.  A  /\  ps ) )  =  B )
2320, 22bitr4di 198 1  |-  ( (
ph  /\  E! x  e.  A  ps )  ->  ( ch  <->  ( iota_ x  e.  A  ps )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   F/wnf 1460   E!weu 2026    e. wcel 2148   F/_wnfc 2306   E!wreu 2457   iotacio 5178   iota_crio 5833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-reu 2462  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180  df-riota 5834
This theorem is referenced by:  riota2f  5855  riota5f  5858
  Copyright terms: Public domain W3C validator