Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riota2df | Unicode version |
Description: A deduction version of riota2f 5830. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2df.1 | |
riota2df.2 | |
riota2df.3 | |
riota2df.4 | |
riota2df.5 |
Ref | Expression |
---|---|
riota2df |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2df.4 | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | simpr 109 | . . . 4 | |
4 | df-reu 2455 | . . . 4 | |
5 | 3, 4 | sylib 121 | . . 3 |
6 | simpr 109 | . . . . . 6 | |
7 | 2 | adantr 274 | . . . . . 6 |
8 | 6, 7 | eqeltrd 2247 | . . . . 5 |
9 | 8 | biantrurd 303 | . . . 4 |
10 | riota2df.5 | . . . . 5 | |
11 | 10 | adantlr 474 | . . . 4 |
12 | 9, 11 | bitr3d 189 | . . 3 |
13 | riota2df.1 | . . . 4 | |
14 | nfreu1 2641 | . . . 4 | |
15 | 13, 14 | nfan 1558 | . . 3 |
16 | riota2df.3 | . . . 4 | |
17 | 16 | adantr 274 | . . 3 |
18 | riota2df.2 | . . . 4 | |
19 | 18 | adantr 274 | . . 3 |
20 | 2, 5, 12, 15, 17, 19 | iota2df 5184 | . 2 |
21 | df-riota 5809 | . . 3 | |
22 | 21 | eqeq1i 2178 | . 2 |
23 | 20, 22 | bitr4di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wnf 1453 weu 2019 wcel 2141 wnfc 2299 wreu 2450 cio 5158 crio 5808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-riota 5809 |
This theorem is referenced by: riota2f 5830 riota5f 5833 |
Copyright terms: Public domain | W3C validator |