ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnral Unicode version

Theorem nnral 2495
Description: The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1671. (Contributed by Jim Kingdon, 1-Aug-2024.)
Assertion
Ref Expression
nnral  |-  ( -. 
-.  A. x  e.  A  ph 
->  A. x  e.  A  -.  -.  ph )

Proof of Theorem nnral
StepHypRef Expression
1 rexnalim 2494 . . 3  |-  ( E. x  e.  A  -.  ph 
->  -.  A. x  e.  A  ph )
21con3i 633 . 2  |-  ( -. 
-.  A. x  e.  A  ph 
->  -.  E. x  e.  A  -.  ph )
3 ralnex 2493 . 2  |-  ( A. x  e.  A  -.  -.  ph  <->  -.  E. x  e.  A  -.  ph )
42, 3sylibr 134 1  |-  ( -. 
-.  A. x  e.  A  ph 
->  A. x  e.  A  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wral 2483   E.wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-ral 2488  df-rex 2489
This theorem is referenced by:  onntri13  7349  onntri24  7353
  Copyright terms: Public domain W3C validator