| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnral | Unicode version | ||
| Description: The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1672. (Contributed by Jim Kingdon, 1-Aug-2024.) |
| Ref | Expression |
|---|---|
| nnral |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexnalim 2495 |
. . 3
| |
| 2 | 1 | con3i 633 |
. 2
|
| 3 | ralnex 2494 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: onntri13 7350 onntri24 7354 |
| Copyright terms: Public domain | W3C validator |