Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnral | Unicode version |
Description: The double negation of a universal quantification implies the universal quantification of the double negation. Restricted quantifier version of nnal 1626. (Contributed by Jim Kingdon, 1-Aug-2024.) |
Ref | Expression |
---|---|
nnral |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnalim 2443 | . . 3 | |
2 | 1 | con3i 622 | . 2 |
3 | ralnex 2442 | . 2 | |
4 | 2, 3 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wral 2432 wrex 2433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-fal 1338 df-nf 1438 df-ral 2437 df-rex 2438 |
This theorem is referenced by: onntri13 7152 onntri24 7156 |
Copyright terms: Public domain | W3C validator |