ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nvel Unicode version

Theorem nvel 3936
Description: The universal class doesn't belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel  |-  -.  _V  e.  A

Proof of Theorem nvel
StepHypRef Expression
1 vprc 3935 . 2  |-  -.  _V  e.  _V
2 elex 2621 . 2  |-  ( _V  e.  A  ->  _V  e.  _V )
31, 2mto 621 1  |-  -.  _V  e.  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1434   _Vcvv 2612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2065  ax-sep 3922
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-v 2614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator