ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nvel GIF version

Theorem nvel 4029
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 4028 . 2 ¬ V ∈ V
2 elex 2669 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 634 1 ¬ V ∈ 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1463  Vcvv 2658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-ext 2097  ax-sep 4014
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-v 2660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator