ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nvel GIF version

Theorem nvel 3964
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 3963 . 2 ¬ V ∈ V
2 elex 2630 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 623 1 ¬ V ∈ 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1438  Vcvv 2619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070  ax-sep 3949
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator