| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | Unicode version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1640 |
. 2
| |
| 2 | df-clel 2201 |
. 2
| |
| 3 | isset 2778 |
. 2
| |
| 4 | 1, 2, 3 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elexi 2784 elexd 2785 elisset 2786 vtoclgft 2823 vtoclgf 2831 vtoclg1f 2832 vtocl2gf 2835 vtocl3gf 2836 spcimgft 2849 spcimegft 2851 elab4g 2922 elrabf 2927 mob 2955 sbcex 3007 sbcel1v 3061 sbcabel 3080 csbcomg 3116 csbvarg 3121 csbiebt 3133 csbnestgf 3146 csbidmg 3150 sbcco3g 3151 csbco3g 3152 eldif 3175 ssv 3215 elun 3314 elin 3356 elpwb 3626 snidb 3663 snssg 3767 dfopg 3817 eluni 3853 eliun 3931 csbexga 4173 nvel 4178 class2seteq 4208 axpweq 4216 snelpwi 4257 opexg 4273 elopab 4305 epelg 4338 elon2 4424 unexg 4491 reuhypd 4519 sucexg 4547 onsucb 4552 onsucelsucr 4557 sucunielr 4559 en2lp 4603 peano2 4644 peano2b 4664 opelvvg 4725 opeliunxp 4731 opeliunxp2 4819 ideqg 4830 elrnmptg 4931 imasng 5048 iniseg 5055 opswapg 5170 elxp4 5171 elxp5 5172 dmmptg 5181 iota2 5262 fnmpt 5404 fvexg 5597 fvelimab 5637 mptfvex 5667 fvmptdf 5669 fvmptdv2 5671 mpteqb 5672 fvmptt 5673 fvmptf 5674 fvopab6 5678 fsn2 5756 fmptpr 5778 eloprabga 6034 ovmpos 6071 ov2gf 6072 ovmpodxf 6073 ovmpox 6076 ovmpoga 6077 ovmpodf 6079 ovi3 6085 ovelrn 6097 suppssfv 6156 suppssov1 6157 offval3 6221 1stexg 6255 2ndexg 6256 elxp6 6257 elxp7 6258 releldm2 6273 fnmpo 6290 mpofvex 6293 mpoexg 6299 opeliunxp2f 6326 brtpos2 6339 rdgtfr 6462 rdgruledefgg 6463 frec0g 6485 sucinc2 6534 nntri3or 6581 relelec 6664 ecdmn0m 6666 mapvalg 6747 pmvalg 6748 elpmg 6753 elixp2 6791 mptelixpg 6823 elixpsn 6824 map1 6906 rex2dom 6912 mapdom1g 6946 mapxpen 6947 fival 7074 elfi2 7076 djulclr 7153 djurclr 7154 djulcl 7155 djurcl 7156 djulclb 7159 inl11 7169 djuss 7174 1stinl 7178 2ndinl 7179 1stinr 7180 2ndinr 7181 ismkvnex 7259 omniwomnimkv 7271 isacnm 7317 cc4n 7385 elinp 7589 addnqprlemfl 7674 addnqprlemfu 7675 mulnqprlemfl 7690 mulnqprlemfu 7691 recexprlemell 7737 recexprlemelu 7738 wrdexg 11007 wrdsymb0 11028 lswwrd 11042 ccatfvalfi 11051 swrdval 11104 swrd00g 11105 pfxval 11130 shftfvalg 11162 clim 11625 climmpt 11644 climshft2 11650 4sqlem2 12745 isstruct2r 12876 slotex 12892 setsvalg 12895 setsfun0 12901 setscom 12905 ressvalsets 12929 ressbasid 12935 restval 13110 topnvalg 13116 tgval 13127 ptex 13129 prdsex 13134 pwsval 13156 pwsbas 13157 pwselbasb 13158 pwssnf1o 13163 imasex 13170 qusex 13190 qusaddvallemg 13198 xpsfrnel2 13211 plusffvalg 13227 grpidvalg 13238 gsum0g 13261 sgrp1 13276 issubmnd 13307 pws0g 13316 issubm 13337 grppropstrg 13384 grpinvfvalg 13407 grpinvfng 13409 grpsubfvalg 13410 grpressid 13426 mulgfvalg 13490 mulgex 13492 mulgfng 13493 issubg 13542 subgex 13545 releqgg 13589 eqgex 13590 eqgfval 13591 isghm 13612 ablressid 13704 mgpvalg 13718 mgptopng 13724 rngressid 13749 rngpropd 13750 ringidvalg 13756 dfur2g 13757 issrg 13760 iscrng2 13810 ringressid 13858 opprvalg 13864 reldvdsrsrg 13887 dvdsrex 13893 unitgrp 13911 unitabl 13912 unitlinv 13921 unitrinv 13922 isnzr2 13979 issubrng 13994 issubrg 14016 subrgugrp 14035 aprap 14081 islmod 14086 scaffvalg 14101 lsssetm 14151 islssmg 14153 lspfval 14183 lspval 14185 lspcl 14186 lspex 14190 sraval 14232 rlmvalg 14249 rlmsubg 14253 rlmvnegg 14260 ixpsnbasval 14261 lidlvalg 14266 rspvalg 14267 lidlex 14268 rspex 14269 2idlvalg 14298 zrhvalg 14413 zlmval 14422 mplvalcoe 14485 mplbascoe 14486 mplplusgg 14498 toponsspwpwg 14527 eltg 14557 eltg2 14558 restbasg 14673 tgrest 14674 txvalex 14759 txval 14760 ispsmet 14828 ismet 14849 isxmet 14850 xmetunirn 14863 blfvalps 14890 vtxvalg 15648 iedgvalg 15649 edgvalg 15687 bj-vtoclgft 15748 djucllem 15773 bj-nvel 15870 2omapen 15970 |
| Copyright terms: Public domain | W3C validator |