![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex | Unicode version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1617 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-clel 2173 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | isset 2744 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3imtr4i 201 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2740 |
This theorem is referenced by: elexi 2750 elexd 2751 elisset 2752 vtoclgft 2788 vtoclgf 2796 vtoclg1f 2797 vtocl2gf 2800 vtocl3gf 2801 spcimgft 2814 spcimegft 2816 elab4g 2887 elrabf 2892 mob 2920 sbcex 2972 sbcel1v 3026 sbcabel 3045 csbcomg 3081 csbvarg 3086 csbiebt 3097 csbnestgf 3110 csbidmg 3114 sbcco3g 3115 csbco3g 3116 eldif 3139 ssv 3178 elun 3277 elin 3319 elpwb 3586 snidb 3623 snssg 3727 dfopg 3777 eluni 3813 eliun 3891 csbexga 4132 nvel 4137 class2seteq 4164 axpweq 4172 snelpwi 4213 opexg 4229 elopab 4259 epelg 4291 elon2 4377 unexg 4444 reuhypd 4472 sucexg 4498 onsucb 4503 onsucelsucr 4508 sucunielr 4510 en2lp 4554 peano2 4595 peano2b 4615 opelvvg 4676 opeliunxp 4682 opeliunxp2 4768 ideqg 4779 elrnmptg 4880 imasng 4994 iniseg 5001 opswapg 5116 elxp4 5117 elxp5 5118 dmmptg 5127 iota2 5207 fnmpt 5343 fvexg 5535 fvelimab 5573 mptfvex 5602 fvmptdf 5604 fvmptdv2 5606 mpteqb 5607 fvmptt 5608 fvmptf 5609 fvopab6 5613 fsn2 5691 fmptpr 5709 eloprabga 5962 ovmpos 5998 ov2gf 5999 ovmpodxf 6000 ovmpox 6003 ovmpoga 6004 ovmpodf 6006 ovi3 6011 ovelrn 6023 suppssfv 6079 suppssov1 6080 offval3 6135 1stexg 6168 2ndexg 6169 elxp6 6170 elxp7 6171 releldm2 6186 fnmpo 6203 mpofvex 6204 mpoexg 6212 opeliunxp2f 6239 brtpos2 6252 rdgtfr 6375 rdgruledefgg 6376 frec0g 6398 sucinc2 6447 nntri3or 6494 relelec 6575 ecdmn0m 6577 mapvalg 6658 pmvalg 6659 elpmg 6664 elixp2 6702 mptelixpg 6734 elixpsn 6735 map1 6812 mapdom1g 6847 mapxpen 6848 fival 6969 elfi2 6971 djulclr 7048 djurclr 7049 djulcl 7050 djurcl 7051 djulclb 7054 inl11 7064 djuss 7069 1stinl 7073 2ndinl 7074 1stinr 7075 2ndinr 7076 ismkvnex 7153 omniwomnimkv 7165 cc4n 7270 elinp 7473 addnqprlemfl 7558 addnqprlemfu 7559 mulnqprlemfl 7574 mulnqprlemfu 7575 recexprlemell 7621 recexprlemelu 7622 shftfvalg 10827 clim 11289 climmpt 11308 climshft2 11314 4sqlem2 12387 isstruct2r 12473 slotex 12489 setsvalg 12492 setsfun0 12498 setscom 12502 ressvalsets 12524 restval 12694 topnvalg 12700 tgval 12711 ptex 12713 prdsex 12718 imasex 12726 qusaddvallemg 12752 xpsfrnel2 12765 plusffvalg 12781 grpidvalg 12792 sgrp1 12816 issubmnd 12843 issubm 12863 grppropstrg 12895 grpinvfvalg 12915 grpinvfng 12917 grpsubfvalg 12918 grpressid 12931 mulgfvalg 12985 mulgfng 12987 issubg 13033 subgex 13036 releqgg 13080 eqgfval 13081 mgpvalg 13133 mgptopng 13139 ringidvalg 13144 dfur2g 13145 issrg 13148 iscrng2 13198 ringressid 13238 opprvalg 13241 reldvdsrsrg 13261 dvdsrex 13267 unitgrp 13285 unitabl 13286 unitlinv 13295 unitrinv 13296 issubrg 13342 subrgugrp 13361 aprap 13376 islmod 13381 scaffvalg 13396 toponsspwpwg 13525 eltg 13555 eltg2 13556 restbasg 13671 tgrest 13672 txvalex 13757 txval 13758 ispsmet 13826 ismet 13847 isxmet 13848 xmetunirn 13861 blfvalps 13888 bj-vtoclgft 14530 djucllem 14555 bj-nvel 14652 |
Copyright terms: Public domain | W3C validator |