| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | Unicode version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1663 |
. 2
| |
| 2 | df-clel 2225 |
. 2
| |
| 3 | isset 2806 |
. 2
| |
| 4 | 1, 2, 3 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elexi 2812 elexd 2813 elisset 2814 vtoclgft 2851 vtoclgf 2859 vtoclg1f 2860 vtocl2gf 2863 vtocl3gf 2864 spcimgft 2879 spcimegft 2881 elab4g 2952 elrabf 2957 mob 2985 sbcex 3037 sbcel1v 3091 sbcabel 3111 csbcomg 3147 csbvarg 3152 csbiebt 3164 csbnestgf 3177 csbidmg 3181 sbcco3g 3182 csbco3g 3183 eldif 3206 ssv 3246 elun 3345 elin 3387 elif 3614 elpwb 3659 snidb 3696 snssg 3802 dfopg 3855 eluni 3891 eliun 3969 csbexga 4212 nvel 4217 class2seteq 4247 axpweq 4255 snelpwi 4297 opexg 4314 elopab 4346 epelg 4381 elon2 4467 unexg 4534 reuhypd 4562 sucexg 4590 onsucb 4595 onsucelsucr 4600 sucunielr 4602 en2lp 4646 peano2 4687 peano2b 4707 opelvvg 4768 opeliunxp 4774 opeliunxp2 4862 ideqg 4873 elrnmptg 4976 imasng 5093 iniseg 5100 opswapg 5215 elxp4 5216 elxp5 5217 dmmptg 5226 iota2 5308 fnmpt 5450 fvexg 5646 fvelimab 5690 mptfvex 5720 fvmptdf 5722 fvmptdv2 5724 mpteqb 5725 fvmptt 5726 fvmptf 5727 fvopab6 5731 fsn2 5809 fmptpr 5831 eloprabga 6091 ovmpos 6128 ov2gf 6129 ovmpodxf 6130 ovmpox 6133 ovmpoga 6134 ovmpodf 6136 ovi3 6142 ovelrn 6154 suppssfv 6214 suppssov1 6215 offval3 6279 1stexg 6313 2ndexg 6314 elxp6 6315 elxp7 6316 releldm2 6331 fnmpo 6348 mpofvex 6351 mpoexg 6357 opeliunxp2f 6384 brtpos2 6397 rdgtfr 6520 rdgruledefgg 6521 frec0g 6543 sucinc2 6592 nntri3or 6639 relelec 6722 ecdmn0m 6724 mapvalg 6805 pmvalg 6806 elpmg 6811 elixp2 6849 mptelixpg 6881 elixpsn 6882 map1 6965 rex2dom 6971 mapdom1g 7008 mapxpen 7009 fival 7137 elfi2 7139 djulclr 7216 djurclr 7217 djulcl 7218 djurcl 7219 djulclb 7222 inl11 7232 djuss 7237 1stinl 7241 2ndinl 7242 1stinr 7243 2ndinr 7244 ismkvnex 7322 omniwomnimkv 7334 isacnm 7385 cc4n 7457 elinp 7661 addnqprlemfl 7746 addnqprlemfu 7747 mulnqprlemfl 7762 mulnqprlemfu 7763 recexprlemell 7809 recexprlemelu 7810 wrdexg 11082 wrdsymb0 11104 lswwrd 11118 ccatfvalfi 11127 swrdval 11180 swrd00g 11181 pfxval 11206 cats1fvn 11296 cats1fvnd 11297 s2fv1g 11320 s2leng 11321 s2dmg 11322 shftfvalg 11329 clim 11792 climmpt 11811 climshft2 11817 4sqlem2 12912 isstruct2r 13043 slotex 13059 setsvalg 13062 setsfun0 13068 setscom 13072 ressvalsets 13097 ressbasid 13103 restval 13278 topnvalg 13284 tgval 13295 ptex 13297 prdsex 13302 pwsval 13324 pwsbas 13325 pwselbasb 13326 pwssnf1o 13331 imasex 13338 qusex 13358 qusaddvallemg 13366 xpsfrnel2 13379 plusffvalg 13395 grpidvalg 13406 gsum0g 13429 sgrp1 13444 issubmnd 13475 pws0g 13484 issubm 13505 grppropstrg 13552 grpinvfvalg 13575 grpinvfng 13577 grpsubfvalg 13578 grpressid 13594 mulgfvalg 13658 mulgex 13660 mulgfng 13661 issubg 13710 subgex 13713 releqgg 13757 eqgex 13758 eqgfval 13759 isghm 13780 ablressid 13872 mgpvalg 13886 mgptopng 13892 rngressid 13917 rngpropd 13918 ringidvalg 13924 dfur2g 13925 issrg 13928 iscrng2 13978 ringressid 14026 opprvalg 14032 dvdsrex 14062 unitgrp 14080 unitabl 14081 unitlinv 14090 unitrinv 14091 isnzr2 14148 issubrng 14163 issubrg 14185 subrgugrp 14204 aprap 14250 islmod 14255 scaffvalg 14270 lsssetm 14320 islssmg 14322 lspfval 14352 lspval 14354 lspcl 14355 lspex 14359 sraval 14401 rlmvalg 14418 rlmsubg 14422 rlmvnegg 14429 ixpsnbasval 14430 lidlvalg 14435 rspvalg 14436 lidlex 14437 rspex 14438 2idlvalg 14467 zrhvalg 14582 zlmval 14591 mplvalcoe 14654 mplbascoe 14655 mplplusgg 14667 toponsspwpwg 14696 eltg 14726 eltg2 14727 restbasg 14842 tgrest 14843 txvalex 14928 txval 14929 ispsmet 14997 ismet 15018 isxmet 15019 xmetunirn 15032 blfvalps 15059 vtxvalg 15817 iedgvalg 15818 vtxex 15819 edgvalg 15860 wksfval 16035 iswlkg 16041 wlkvtxeledgg 16055 bj-vtoclgft 16139 djucllem 16164 bj-nvel 16260 2omapen 16360 pw1mapen 16362 |
| Copyright terms: Public domain | W3C validator |