Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex | Unicode version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1615 | . 2 | |
2 | df-clel 2171 | . 2 | |
3 | isset 2741 | . 2 | |
4 | 1, 2, 3 | 3imtr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wex 1490 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: elexi 2747 elexd 2748 elisset 2749 vtoclgft 2785 vtoclgf 2793 vtoclg1f 2794 vtocl2gf 2797 vtocl3gf 2798 spcimgft 2811 spcimegft 2813 elab4g 2884 elrabf 2889 mob 2917 sbcex 2969 sbcel1v 3023 sbcabel 3042 csbcomg 3078 csbvarg 3083 csbiebt 3094 csbnestgf 3107 csbidmg 3111 sbcco3g 3112 csbco3g 3113 eldif 3136 ssv 3175 elun 3274 elin 3316 elpwb 3582 snidb 3619 snssg 3723 dfopg 3772 eluni 3808 eliun 3886 csbexga 4126 nvel 4131 class2seteq 4158 axpweq 4166 snelpwi 4206 opexg 4222 elopab 4252 epelg 4284 elon2 4370 unexg 4437 reuhypd 4465 sucexg 4491 sucelon 4496 onsucelsucr 4501 sucunielr 4503 en2lp 4547 peano2 4588 peano2b 4608 opelvvg 4669 opeliunxp 4675 opeliunxp2 4760 ideqg 4771 elrnmptg 4872 imasng 4986 iniseg 4993 opswapg 5107 elxp4 5108 elxp5 5109 dmmptg 5118 iota2 5198 fnmpt 5334 fvexg 5526 fvelimab 5564 mptfvex 5593 fvmptdf 5595 fvmptdv2 5597 mpteqb 5598 fvmptt 5599 fvmptf 5600 fvopab6 5604 fsn2 5682 fmptpr 5700 eloprabga 5952 ovmpos 5988 ov2gf 5989 ovmpodxf 5990 ovmpox 5993 ovmpoga 5994 ovmpodf 5996 ovi3 6001 ovelrn 6013 suppssfv 6069 suppssov1 6070 offval3 6125 1stexg 6158 2ndexg 6159 elxp6 6160 elxp7 6161 releldm2 6176 fnmpo 6193 mpofvex 6194 mpoexg 6202 opeliunxp2f 6229 brtpos2 6242 rdgtfr 6365 rdgruledefgg 6366 frec0g 6388 sucinc2 6437 nntri3or 6484 relelec 6565 ecdmn0m 6567 mapvalg 6648 pmvalg 6649 elpmg 6654 elixp2 6692 mptelixpg 6724 elixpsn 6725 map1 6802 mapdom1g 6837 mapxpen 6838 fival 6959 elfi2 6961 djulclr 7038 djurclr 7039 djulcl 7040 djurcl 7041 djulclb 7044 inl11 7054 djuss 7059 1stinl 7063 2ndinl 7064 1stinr 7065 2ndinr 7066 ismkvnex 7143 omniwomnimkv 7155 cc4n 7245 elinp 7448 addnqprlemfl 7533 addnqprlemfu 7534 mulnqprlemfl 7549 mulnqprlemfu 7550 recexprlemell 7596 recexprlemelu 7597 shftfvalg 10795 clim 11257 climmpt 11276 climshft2 11282 4sqlem2 12354 isstruct2r 12440 slotex 12456 setsvalg 12459 setsfun0 12465 setscom 12469 ressvalsets 12490 restval 12625 topnvalg 12631 plusffvalg 12656 grpidvalg 12667 sgrp1 12691 issubm 12735 grppropstrg 12766 grpinvfvalg 12786 grpinvfng 12788 grpsubfvalg 12789 mulgfvalg 12855 mulgfng 12857 mgpvalg 12940 mgptopng 12946 ringidvalg 12950 dfur2g 12951 issrg 12954 iscrng2 13004 opprvalg 13045 toponsspwpwg 13100 tgval 13129 eltg 13132 eltg2 13133 restbasg 13248 tgrest 13249 txvalex 13334 txval 13335 ispsmet 13403 ismet 13424 isxmet 13425 xmetunirn 13438 blfvalps 13465 bj-vtoclgft 14096 djucllem 14121 bj-nvel 14218 |
Copyright terms: Public domain | W3C validator |