| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elex | Unicode version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| elex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exsimpl 1631 | 
. 2
 | |
| 2 | df-clel 2192 | 
. 2
 | |
| 3 | isset 2769 | 
. 2
 | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: elexi 2775 elexd 2776 elisset 2777 vtoclgft 2814 vtoclgf 2822 vtoclg1f 2823 vtocl2gf 2826 vtocl3gf 2827 spcimgft 2840 spcimegft 2842 elab4g 2913 elrabf 2918 mob 2946 sbcex 2998 sbcel1v 3052 sbcabel 3071 csbcomg 3107 csbvarg 3112 csbiebt 3124 csbnestgf 3137 csbidmg 3141 sbcco3g 3142 csbco3g 3143 eldif 3166 ssv 3205 elun 3304 elin 3346 elpwb 3615 snidb 3652 snssg 3756 dfopg 3806 eluni 3842 eliun 3920 csbexga 4161 nvel 4166 class2seteq 4196 axpweq 4204 snelpwi 4245 opexg 4261 elopab 4292 epelg 4325 elon2 4411 unexg 4478 reuhypd 4506 sucexg 4534 onsucb 4539 onsucelsucr 4544 sucunielr 4546 en2lp 4590 peano2 4631 peano2b 4651 opelvvg 4712 opeliunxp 4718 opeliunxp2 4806 ideqg 4817 elrnmptg 4918 imasng 5034 iniseg 5041 opswapg 5156 elxp4 5157 elxp5 5158 dmmptg 5167 iota2 5248 fnmpt 5384 fvexg 5577 fvelimab 5617 mptfvex 5647 fvmptdf 5649 fvmptdv2 5651 mpteqb 5652 fvmptt 5653 fvmptf 5654 fvopab6 5658 fsn2 5736 fmptpr 5754 eloprabga 6009 ovmpos 6046 ov2gf 6047 ovmpodxf 6048 ovmpox 6051 ovmpoga 6052 ovmpodf 6054 ovi3 6060 ovelrn 6072 suppssfv 6131 suppssov1 6132 offval3 6191 1stexg 6225 2ndexg 6226 elxp6 6227 elxp7 6228 releldm2 6243 fnmpo 6260 mpofvex 6263 mpoexg 6269 opeliunxp2f 6296 brtpos2 6309 rdgtfr 6432 rdgruledefgg 6433 frec0g 6455 sucinc2 6504 nntri3or 6551 relelec 6634 ecdmn0m 6636 mapvalg 6717 pmvalg 6718 elpmg 6723 elixp2 6761 mptelixpg 6793 elixpsn 6794 map1 6871 mapdom1g 6908 mapxpen 6909 fival 7036 elfi2 7038 djulclr 7115 djurclr 7116 djulcl 7117 djurcl 7118 djulclb 7121 inl11 7131 djuss 7136 1stinl 7140 2ndinl 7141 1stinr 7142 2ndinr 7143 ismkvnex 7221 omniwomnimkv 7233 cc4n 7338 elinp 7541 addnqprlemfl 7626 addnqprlemfu 7627 mulnqprlemfl 7642 mulnqprlemfu 7643 recexprlemell 7689 recexprlemelu 7690 wrdexg 10946 wrdsymb0 10967 shftfvalg 10983 clim 11446 climmpt 11465 climshft2 11471 4sqlem2 12558 isstruct2r 12689 slotex 12705 setsvalg 12708 setsfun0 12714 setscom 12718 ressvalsets 12742 ressbasid 12748 restval 12916 topnvalg 12922 tgval 12933 ptex 12935 prdsex 12940 imasex 12948 qusex 12968 qusaddvallemg 12976 xpsfrnel2 12989 plusffvalg 13005 grpidvalg 13016 gsum0g 13039 sgrp1 13054 issubmnd 13083 issubm 13104 grppropstrg 13151 grpinvfvalg 13174 grpinvfng 13176 grpsubfvalg 13177 grpressid 13193 mulgfvalg 13251 mulgex 13253 mulgfng 13254 issubg 13303 subgex 13306 releqgg 13350 eqgex 13351 eqgfval 13352 isghm 13373 ablressid 13465 mgpvalg 13479 mgptopng 13485 rngressid 13510 rngpropd 13511 ringidvalg 13517 dfur2g 13518 issrg 13521 iscrng2 13571 ringressid 13619 opprvalg 13625 reldvdsrsrg 13648 dvdsrex 13654 unitgrp 13672 unitabl 13673 unitlinv 13682 unitrinv 13683 isnzr2 13740 issubrng 13755 issubrg 13777 subrgugrp 13796 aprap 13842 islmod 13847 scaffvalg 13862 lsssetm 13912 islssmg 13914 lspfval 13944 lspval 13946 lspcl 13947 lspex 13951 sraval 13993 rlmvalg 14010 rlmsubg 14014 rlmvnegg 14021 ixpsnbasval 14022 lidlvalg 14027 rspvalg 14028 lidlex 14029 rspex 14030 2idlvalg 14059 zrhvalg 14174 zlmval 14183 toponsspwpwg 14258 eltg 14288 eltg2 14289 restbasg 14404 tgrest 14405 txvalex 14490 txval 14491 ispsmet 14559 ismet 14580 isxmet 14581 xmetunirn 14594 blfvalps 14621 bj-vtoclgft 15421 djucllem 15446 bj-nvel 15543 | 
| Copyright terms: Public domain | W3C validator |