| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | Unicode version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1631 |
. 2
| |
| 2 | df-clel 2192 |
. 2
| |
| 3 | isset 2769 |
. 2
| |
| 4 | 1, 2, 3 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elexi 2775 elexd 2776 elisset 2777 vtoclgft 2814 vtoclgf 2822 vtoclg1f 2823 vtocl2gf 2826 vtocl3gf 2827 spcimgft 2840 spcimegft 2842 elab4g 2913 elrabf 2918 mob 2946 sbcex 2998 sbcel1v 3052 sbcabel 3071 csbcomg 3107 csbvarg 3112 csbiebt 3124 csbnestgf 3137 csbidmg 3141 sbcco3g 3142 csbco3g 3143 eldif 3166 ssv 3206 elun 3305 elin 3347 elpwb 3616 snidb 3653 snssg 3757 dfopg 3807 eluni 3843 eliun 3921 csbexga 4162 nvel 4167 class2seteq 4197 axpweq 4205 snelpwi 4246 opexg 4262 elopab 4293 epelg 4326 elon2 4412 unexg 4479 reuhypd 4507 sucexg 4535 onsucb 4540 onsucelsucr 4545 sucunielr 4547 en2lp 4591 peano2 4632 peano2b 4652 opelvvg 4713 opeliunxp 4719 opeliunxp2 4807 ideqg 4818 elrnmptg 4919 imasng 5035 iniseg 5042 opswapg 5157 elxp4 5158 elxp5 5159 dmmptg 5168 iota2 5249 fnmpt 5385 fvexg 5578 fvelimab 5618 mptfvex 5648 fvmptdf 5650 fvmptdv2 5652 mpteqb 5653 fvmptt 5654 fvmptf 5655 fvopab6 5659 fsn2 5737 fmptpr 5755 eloprabga 6011 ovmpos 6048 ov2gf 6049 ovmpodxf 6050 ovmpox 6053 ovmpoga 6054 ovmpodf 6056 ovi3 6062 ovelrn 6074 suppssfv 6133 suppssov1 6134 offval3 6193 1stexg 6227 2ndexg 6228 elxp6 6229 elxp7 6230 releldm2 6245 fnmpo 6262 mpofvex 6265 mpoexg 6271 opeliunxp2f 6298 brtpos2 6311 rdgtfr 6434 rdgruledefgg 6435 frec0g 6457 sucinc2 6506 nntri3or 6553 relelec 6636 ecdmn0m 6638 mapvalg 6719 pmvalg 6720 elpmg 6725 elixp2 6763 mptelixpg 6795 elixpsn 6796 map1 6873 mapdom1g 6910 mapxpen 6911 fival 7038 elfi2 7040 djulclr 7117 djurclr 7118 djulcl 7119 djurcl 7120 djulclb 7123 inl11 7133 djuss 7138 1stinl 7142 2ndinl 7143 1stinr 7144 2ndinr 7145 ismkvnex 7223 omniwomnimkv 7235 cc4n 7341 elinp 7544 addnqprlemfl 7629 addnqprlemfu 7630 mulnqprlemfl 7645 mulnqprlemfu 7646 recexprlemell 7692 recexprlemelu 7693 wrdexg 10949 wrdsymb0 10970 shftfvalg 10986 clim 11449 climmpt 11468 climshft2 11474 4sqlem2 12569 isstruct2r 12700 slotex 12716 setsvalg 12719 setsfun0 12725 setscom 12729 ressvalsets 12753 ressbasid 12759 restval 12933 topnvalg 12939 tgval 12950 ptex 12952 prdsex 12957 imasex 12974 qusex 12994 qusaddvallemg 13002 xpsfrnel2 13015 plusffvalg 13031 grpidvalg 13042 gsum0g 13065 sgrp1 13080 issubmnd 13109 issubm 13130 grppropstrg 13177 grpinvfvalg 13200 grpinvfng 13202 grpsubfvalg 13203 grpressid 13219 mulgfvalg 13277 mulgex 13279 mulgfng 13280 issubg 13329 subgex 13332 releqgg 13376 eqgex 13377 eqgfval 13378 isghm 13399 ablressid 13491 mgpvalg 13505 mgptopng 13511 rngressid 13536 rngpropd 13537 ringidvalg 13543 dfur2g 13544 issrg 13547 iscrng2 13597 ringressid 13645 opprvalg 13651 reldvdsrsrg 13674 dvdsrex 13680 unitgrp 13698 unitabl 13699 unitlinv 13708 unitrinv 13709 isnzr2 13766 issubrng 13781 issubrg 13803 subrgugrp 13822 aprap 13868 islmod 13873 scaffvalg 13888 lsssetm 13938 islssmg 13940 lspfval 13970 lspval 13972 lspcl 13973 lspex 13977 sraval 14019 rlmvalg 14036 rlmsubg 14040 rlmvnegg 14047 ixpsnbasval 14048 lidlvalg 14053 rspvalg 14054 lidlex 14055 rspex 14056 2idlvalg 14085 zrhvalg 14200 zlmval 14209 toponsspwpwg 14284 eltg 14314 eltg2 14315 restbasg 14430 tgrest 14431 txvalex 14516 txval 14517 ispsmet 14585 ismet 14606 isxmet 14607 xmetunirn 14620 blfvalps 14647 bj-vtoclgft 15447 djucllem 15472 bj-nvel 15569 2omapen 15669 |
| Copyright terms: Public domain | W3C validator |