![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex | Unicode version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1628 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-clel 2189 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | isset 2766 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3imtr4i 201 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elexi 2772 elexd 2773 elisset 2774 vtoclgft 2810 vtoclgf 2818 vtoclg1f 2819 vtocl2gf 2822 vtocl3gf 2823 spcimgft 2836 spcimegft 2838 elab4g 2909 elrabf 2914 mob 2942 sbcex 2994 sbcel1v 3048 sbcabel 3067 csbcomg 3103 csbvarg 3108 csbiebt 3120 csbnestgf 3133 csbidmg 3137 sbcco3g 3138 csbco3g 3139 eldif 3162 ssv 3201 elun 3300 elin 3342 elpwb 3611 snidb 3648 snssg 3752 dfopg 3802 eluni 3838 eliun 3916 csbexga 4157 nvel 4162 class2seteq 4192 axpweq 4200 snelpwi 4241 opexg 4257 elopab 4288 epelg 4321 elon2 4407 unexg 4474 reuhypd 4502 sucexg 4530 onsucb 4535 onsucelsucr 4540 sucunielr 4542 en2lp 4586 peano2 4627 peano2b 4647 opelvvg 4708 opeliunxp 4714 opeliunxp2 4802 ideqg 4813 elrnmptg 4914 imasng 5030 iniseg 5037 opswapg 5152 elxp4 5153 elxp5 5154 dmmptg 5163 iota2 5244 fnmpt 5380 fvexg 5573 fvelimab 5613 mptfvex 5643 fvmptdf 5645 fvmptdv2 5647 mpteqb 5648 fvmptt 5649 fvmptf 5650 fvopab6 5654 fsn2 5732 fmptpr 5750 eloprabga 6005 ovmpos 6042 ov2gf 6043 ovmpodxf 6044 ovmpox 6047 ovmpoga 6048 ovmpodf 6050 ovi3 6055 ovelrn 6067 suppssfv 6126 suppssov1 6127 offval3 6186 1stexg 6220 2ndexg 6221 elxp6 6222 elxp7 6223 releldm2 6238 fnmpo 6255 mpofvex 6256 mpoexg 6264 opeliunxp2f 6291 brtpos2 6304 rdgtfr 6427 rdgruledefgg 6428 frec0g 6450 sucinc2 6499 nntri3or 6546 relelec 6629 ecdmn0m 6631 mapvalg 6712 pmvalg 6713 elpmg 6718 elixp2 6756 mptelixpg 6788 elixpsn 6789 map1 6866 mapdom1g 6903 mapxpen 6904 fival 7029 elfi2 7031 djulclr 7108 djurclr 7109 djulcl 7110 djurcl 7111 djulclb 7114 inl11 7124 djuss 7129 1stinl 7133 2ndinl 7134 1stinr 7135 2ndinr 7136 ismkvnex 7214 omniwomnimkv 7226 cc4n 7331 elinp 7534 addnqprlemfl 7619 addnqprlemfu 7620 mulnqprlemfl 7635 mulnqprlemfu 7636 recexprlemell 7682 recexprlemelu 7683 wrdexg 10925 wrdsymb0 10946 shftfvalg 10962 clim 11424 climmpt 11443 climshft2 11449 4sqlem2 12527 isstruct2r 12629 slotex 12645 setsvalg 12648 setsfun0 12654 setscom 12658 ressvalsets 12682 ressbasid 12688 restval 12856 topnvalg 12862 tgval 12873 ptex 12875 prdsex 12880 imasex 12888 qusex 12908 qusaddvallemg 12916 xpsfrnel2 12929 plusffvalg 12945 grpidvalg 12956 gsum0g 12979 sgrp1 12994 issubmnd 13023 issubm 13044 grppropstrg 13091 grpinvfvalg 13114 grpinvfng 13116 grpsubfvalg 13117 grpressid 13133 mulgfvalg 13191 mulgex 13193 mulgfng 13194 issubg 13243 subgex 13246 releqgg 13290 eqgex 13291 eqgfval 13292 isghm 13313 ablressid 13405 mgpvalg 13419 mgptopng 13425 rngressid 13450 rngpropd 13451 ringidvalg 13457 dfur2g 13458 issrg 13461 iscrng2 13511 ringressid 13559 opprvalg 13565 reldvdsrsrg 13588 dvdsrex 13594 unitgrp 13612 unitabl 13613 unitlinv 13622 unitrinv 13623 isnzr2 13680 issubrng 13695 issubrg 13717 subrgugrp 13736 aprap 13782 islmod 13787 scaffvalg 13802 lsssetm 13852 islssmg 13854 lspfval 13884 lspval 13886 lspcl 13887 lspex 13891 sraval 13933 rlmvalg 13950 rlmsubg 13954 rlmvnegg 13961 ixpsnbasval 13962 lidlvalg 13967 rspvalg 13968 lidlex 13969 rspex 13970 2idlvalg 13999 zrhvalg 14106 zlmval 14115 toponsspwpwg 14190 eltg 14220 eltg2 14221 restbasg 14336 tgrest 14337 txvalex 14422 txval 14423 ispsmet 14491 ismet 14512 isxmet 14513 xmetunirn 14526 blfvalps 14553 bj-vtoclgft 15267 djucllem 15292 bj-nvel 15389 |
Copyright terms: Public domain | W3C validator |