ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri3or Unicode version

Theorem onntri3or 7258
Description: Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
Assertion
Ref Expression
onntri3or  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
Distinct variable group:    x, y

Proof of Theorem onntri3or
StepHypRef Expression
1 onntri51 7253 . . 3  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 onntri13 7251 . . 3  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
31, 2syl 14 . 2  |-  ( -. 
-. EXMID 
->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
4 onntri35 7250 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  -. EXMID )
53, 4impbii 126 1  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    \/ w3o 978   A.wral 2465  EXMIDwem 4206   Oncon0 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-tr 4114  df-exmid 4207  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-1o 6431  df-2o 6432  df-3o 6433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator