| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onntri35 | Unicode version | ||
| Description: Double negated ordinal
trichotomy.
There are five equivalent statements: (1)
Another way of stating this is that EXMID is equivalent
to
trichotomy, either the (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| Ref | Expression |
|---|---|
| onntri35 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7411 |
. . . . 5
| |
| 2 | 1 | onsuci 4608 |
. . . 4
|
| 3 | 3on 6573 |
. . . 4
| |
| 4 | eleq1 2292 |
. . . . . . . 8
| |
| 5 | eqeq1 2236 |
. . . . . . . 8
| |
| 6 | eleq2 2293 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | 3orbi123d 1345 |
. . . . . . 7
|
| 8 | 7 | notbid 671 |
. . . . . 6
|
| 9 | 8 | notbid 671 |
. . . . 5
|
| 10 | eleq2 2293 |
. . . . . . . 8
| |
| 11 | eqeq2 2239 |
. . . . . . . 8
| |
| 12 | eleq1 2292 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3orbi123d 1345 |
. . . . . . 7
|
| 14 | 13 | notbid 671 |
. . . . . 6
|
| 15 | 14 | notbid 671 |
. . . . 5
|
| 16 | 9, 15 | rspc2v 2920 |
. . . 4
|
| 17 | 2, 3, 16 | mp2an 426 |
. . 3
|
| 18 | 3ioran 1017 |
. . 3
| |
| 19 | 17, 18 | sylnib 680 |
. 2
|
| 20 | sucpw1nel3 7418 |
. . . 4
| |
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | 2on 6571 |
. . . . . . 7
| |
| 23 | suc11 4650 |
. . . . . . 7
| |
| 24 | 1, 22, 23 | mp2an 426 |
. . . . . 6
|
| 25 | df-3o 6564 |
. . . . . . 7
| |
| 26 | 25 | eqeq2i 2240 |
. . . . . 6
|
| 27 | exmidpweq 7071 |
. . . . . 6
| |
| 28 | 24, 26, 27 | 3bitr4ri 213 |
. . . . 5
|
| 29 | 28 | notbii 672 |
. . . 4
|
| 30 | 29 | biimpi 120 |
. . 3
|
| 31 | 3nelsucpw1 7419 |
. . . 4
| |
| 32 | 31 | a1i 9 |
. . 3
|
| 33 | 21, 30, 32 | 3jca 1201 |
. 2
|
| 34 | 19, 33 | nsyl 631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-exmid 4279 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-1o 6562 df-2o 6563 df-3o 6564 |
| This theorem is referenced by: onntri3or 7430 |
| Copyright terms: Public domain | W3C validator |