| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onntri35 | Unicode version | ||
| Description: Double negated ordinal
trichotomy.
There are five equivalent statements: (1)
Another way of stating this is that EXMID is equivalent
to
trichotomy, either the (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| Ref | Expression |
|---|---|
| onntri35 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7309 |
. . . . 5
| |
| 2 | 1 | onsuci 4553 |
. . . 4
|
| 3 | 3on 6494 |
. . . 4
| |
| 4 | eleq1 2259 |
. . . . . . . 8
| |
| 5 | eqeq1 2203 |
. . . . . . . 8
| |
| 6 | eleq2 2260 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | 3orbi123d 1322 |
. . . . . . 7
|
| 8 | 7 | notbid 668 |
. . . . . 6
|
| 9 | 8 | notbid 668 |
. . . . 5
|
| 10 | eleq2 2260 |
. . . . . . . 8
| |
| 11 | eqeq2 2206 |
. . . . . . . 8
| |
| 12 | eleq1 2259 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3orbi123d 1322 |
. . . . . . 7
|
| 14 | 13 | notbid 668 |
. . . . . 6
|
| 15 | 14 | notbid 668 |
. . . . 5
|
| 16 | 9, 15 | rspc2v 2881 |
. . . 4
|
| 17 | 2, 3, 16 | mp2an 426 |
. . 3
|
| 18 | 3ioran 995 |
. . 3
| |
| 19 | 17, 18 | sylnib 677 |
. 2
|
| 20 | sucpw1nel3 7316 |
. . . 4
| |
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | 2on 6492 |
. . . . . . 7
| |
| 23 | suc11 4595 |
. . . . . . 7
| |
| 24 | 1, 22, 23 | mp2an 426 |
. . . . . 6
|
| 25 | df-3o 6485 |
. . . . . . 7
| |
| 26 | 25 | eqeq2i 2207 |
. . . . . 6
|
| 27 | exmidpweq 6979 |
. . . . . 6
| |
| 28 | 24, 26, 27 | 3bitr4ri 213 |
. . . . 5
|
| 29 | 28 | notbii 669 |
. . . 4
|
| 30 | 29 | biimpi 120 |
. . 3
|
| 31 | 3nelsucpw1 7317 |
. . . 4
| |
| 32 | 31 | a1i 9 |
. . 3
|
| 33 | 21, 30, 32 | 3jca 1179 |
. 2
|
| 34 | 19, 33 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-exmid 4229 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-1o 6483 df-2o 6484 df-3o 6485 |
| This theorem is referenced by: onntri3or 7328 |
| Copyright terms: Public domain | W3C validator |