Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onntri35 | Unicode version |
Description: Double negated ordinal
trichotomy.
There are five equivalent statements: (1) , (2) , (3) , (4) , and (5) EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7215), (3) implies (5) (onntri35 7214), (5) implies (1) (onntri51 7217), (2) implies (4) (onntri24 7219), (4) implies (5) (onntri45 7218), and (5) implies (2) (onntri52 7221). Another way of stating this is that EXMID is equivalent to trichotomy, either the or the form, as shown in exmidontri 7216 and exmidontri2or 7220, respectively. Thus EXMID is equivalent to (1) or (2). In addition, EXMID is equivalent to (3) by onntri3or 7222 and (4) by onntri2or 7223. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
Ref | Expression |
---|---|
onntri35 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7203 | . . . . 5 | |
2 | 1 | onsuci 4500 | . . . 4 |
3 | 3on 6406 | . . . 4 | |
4 | eleq1 2233 | . . . . . . . 8 | |
5 | eqeq1 2177 | . . . . . . . 8 | |
6 | eleq2 2234 | . . . . . . . 8 | |
7 | 4, 5, 6 | 3orbi123d 1306 | . . . . . . 7 |
8 | 7 | notbid 662 | . . . . . 6 |
9 | 8 | notbid 662 | . . . . 5 |
10 | eleq2 2234 | . . . . . . . 8 | |
11 | eqeq2 2180 | . . . . . . . 8 | |
12 | eleq1 2233 | . . . . . . . 8 | |
13 | 10, 11, 12 | 3orbi123d 1306 | . . . . . . 7 |
14 | 13 | notbid 662 | . . . . . 6 |
15 | 14 | notbid 662 | . . . . 5 |
16 | 9, 15 | rspc2v 2847 | . . . 4 |
17 | 2, 3, 16 | mp2an 424 | . . 3 |
18 | 3ioran 988 | . . 3 | |
19 | 17, 18 | sylnib 671 | . 2 |
20 | sucpw1nel3 7210 | . . . 4 | |
21 | 20 | a1i 9 | . . 3 EXMID |
22 | 2on 6404 | . . . . . . 7 | |
23 | suc11 4542 | . . . . . . 7 | |
24 | 1, 22, 23 | mp2an 424 | . . . . . 6 |
25 | df-3o 6397 | . . . . . . 7 | |
26 | 25 | eqeq2i 2181 | . . . . . 6 |
27 | exmidpweq 6887 | . . . . . 6 EXMID | |
28 | 24, 26, 27 | 3bitr4ri 212 | . . . . 5 EXMID |
29 | 28 | notbii 663 | . . . 4 EXMID |
30 | 29 | biimpi 119 | . . 3 EXMID |
31 | 3nelsucpw1 7211 | . . . 4 | |
32 | 31 | a1i 9 | . . 3 EXMID |
33 | 21, 30, 32 | 3jca 1172 | . 2 EXMID |
34 | 19, 33 | nsyl 623 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 w3o 972 w3a 973 wceq 1348 wcel 2141 wral 2448 cpw 3566 EXMIDwem 4180 con0 4348 csuc 4350 c1o 6388 c2o 6389 c3o 6390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-exmid 4181 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-1o 6395 df-2o 6396 df-3o 6397 |
This theorem is referenced by: onntri3or 7222 |
Copyright terms: Public domain | W3C validator |