Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onntri35 | Unicode version |
Description: Double negated ordinal
trichotomy.
There are five equivalent statements: (1) , (2) , (3) , (4) , and (5) EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7194), (3) implies (5) (onntri35 7193), (5) implies (1) (onntri51 7196), (2) implies (4) (onntri24 7198), (4) implies (5) (onntri45 7197), and (5) implies (2) (onntri52 7200). Another way of stating this is that EXMID is equivalent to trichotomy, either the or the form, as shown in exmidontri 7195 and exmidontri2or 7199, respectively. Thus EXMID is equivalent to (1) or (2). In addition, EXMID is equivalent to (3) by onntri3or 7201 and (4) by onntri2or 7202. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
Ref | Expression |
---|---|
onntri35 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7182 | . . . . 5 | |
2 | 1 | onsuci 4493 | . . . 4 |
3 | 3on 6395 | . . . 4 | |
4 | eleq1 2229 | . . . . . . . 8 | |
5 | eqeq1 2172 | . . . . . . . 8 | |
6 | eleq2 2230 | . . . . . . . 8 | |
7 | 4, 5, 6 | 3orbi123d 1301 | . . . . . . 7 |
8 | 7 | notbid 657 | . . . . . 6 |
9 | 8 | notbid 657 | . . . . 5 |
10 | eleq2 2230 | . . . . . . . 8 | |
11 | eqeq2 2175 | . . . . . . . 8 | |
12 | eleq1 2229 | . . . . . . . 8 | |
13 | 10, 11, 12 | 3orbi123d 1301 | . . . . . . 7 |
14 | 13 | notbid 657 | . . . . . 6 |
15 | 14 | notbid 657 | . . . . 5 |
16 | 9, 15 | rspc2v 2843 | . . . 4 |
17 | 2, 3, 16 | mp2an 423 | . . 3 |
18 | 3ioran 983 | . . 3 | |
19 | 17, 18 | sylnib 666 | . 2 |
20 | sucpw1nel3 7189 | . . . 4 | |
21 | 20 | a1i 9 | . . 3 EXMID |
22 | 2on 6393 | . . . . . . 7 | |
23 | suc11 4535 | . . . . . . 7 | |
24 | 1, 22, 23 | mp2an 423 | . . . . . 6 |
25 | df-3o 6386 | . . . . . . 7 | |
26 | 25 | eqeq2i 2176 | . . . . . 6 |
27 | exmidpweq 6875 | . . . . . 6 EXMID | |
28 | 24, 26, 27 | 3bitr4ri 212 | . . . . 5 EXMID |
29 | 28 | notbii 658 | . . . 4 EXMID |
30 | 29 | biimpi 119 | . . 3 EXMID |
31 | 3nelsucpw1 7190 | . . . 4 | |
32 | 31 | a1i 9 | . . 3 EXMID |
33 | 21, 30, 32 | 3jca 1167 | . 2 EXMID |
34 | 19, 33 | nsyl 618 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 w3o 967 w3a 968 wceq 1343 wcel 2136 wral 2444 cpw 3559 EXMIDwem 4173 con0 4341 csuc 4343 c1o 6377 c2o 6378 c3o 6379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-1o 6384 df-2o 6385 df-3o 6386 |
This theorem is referenced by: onntri3or 7201 |
Copyright terms: Public domain | W3C validator |