| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onntri35 | Unicode version | ||
| Description: Double negated ordinal
trichotomy.
There are five equivalent statements: (1)
Another way of stating this is that EXMID is equivalent
to
trichotomy, either the (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| Ref | Expression |
|---|---|
| onntri35 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7372 |
. . . . 5
| |
| 2 | 1 | onsuci 4582 |
. . . 4
|
| 3 | 3on 6536 |
. . . 4
| |
| 4 | eleq1 2270 |
. . . . . . . 8
| |
| 5 | eqeq1 2214 |
. . . . . . . 8
| |
| 6 | eleq2 2271 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | 3orbi123d 1324 |
. . . . . . 7
|
| 8 | 7 | notbid 669 |
. . . . . 6
|
| 9 | 8 | notbid 669 |
. . . . 5
|
| 10 | eleq2 2271 |
. . . . . . . 8
| |
| 11 | eqeq2 2217 |
. . . . . . . 8
| |
| 12 | eleq1 2270 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3orbi123d 1324 |
. . . . . . 7
|
| 14 | 13 | notbid 669 |
. . . . . 6
|
| 15 | 14 | notbid 669 |
. . . . 5
|
| 16 | 9, 15 | rspc2v 2897 |
. . . 4
|
| 17 | 2, 3, 16 | mp2an 426 |
. . 3
|
| 18 | 3ioran 996 |
. . 3
| |
| 19 | 17, 18 | sylnib 678 |
. 2
|
| 20 | sucpw1nel3 7379 |
. . . 4
| |
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | 2on 6534 |
. . . . . . 7
| |
| 23 | suc11 4624 |
. . . . . . 7
| |
| 24 | 1, 22, 23 | mp2an 426 |
. . . . . 6
|
| 25 | df-3o 6527 |
. . . . . . 7
| |
| 26 | 25 | eqeq2i 2218 |
. . . . . 6
|
| 27 | exmidpweq 7032 |
. . . . . 6
| |
| 28 | 24, 26, 27 | 3bitr4ri 213 |
. . . . 5
|
| 29 | 28 | notbii 670 |
. . . 4
|
| 30 | 29 | biimpi 120 |
. . 3
|
| 31 | 3nelsucpw1 7380 |
. . . 4
| |
| 32 | 31 | a1i 9 |
. . 3
|
| 33 | 21, 30, 32 | 3jca 1180 |
. 2
|
| 34 | 19, 33 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-exmid 4255 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-1o 6525 df-2o 6526 df-3o 6527 |
| This theorem is referenced by: onntri3or 7391 |
| Copyright terms: Public domain | W3C validator |