ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri Unicode version

Theorem exmidontri 7238
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Distinct variable group:    x, y

Proof of Theorem exmidontri
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7224 . 2  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 ontriexmidim 4522 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  z  =  { (/)
} )
32adantr 276 . . 3  |-  ( ( A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  /\  z  C_  { (/) } )  -> DECID  z  =  { (/)
} )
43exmid1dc 4201 . 2  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> EXMID )
51, 4impbii 126 1  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 834    \/ w3o 977    = wceq 1353   A.wral 2455    C_ wss 3130   (/)c0 3423   {csn 3593  EXMIDwem 4195   Oncon0 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-uni 3811  df-tr 4103  df-exmid 4196  df-iord 4367  df-on 4369  df-suc 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator