ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri Unicode version

Theorem exmidontri 7301
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Distinct variable group:    x, y

Proof of Theorem exmidontri
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7287 . 2  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 ontriexmidim 4555 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  z  =  { (/)
} )
32adantr 276 . . 3  |-  ( ( A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  /\  z  C_  { (/) } )  -> DECID  z  =  { (/)
} )
43exmid1dc 4230 . 2  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> EXMID )
51, 4impbii 126 1  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 835    \/ w3o 979    = wceq 1364   A.wral 2472    C_ wss 3154   (/)c0 3447   {csn 3619  EXMIDwem 4224   Oncon0 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-uni 3837  df-tr 4129  df-exmid 4225  df-iord 4398  df-on 4400  df-suc 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator