ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri Unicode version

Theorem exmidontri 7351
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Distinct variable group:    x, y

Proof of Theorem exmidontri
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7337 . 2  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 ontriexmidim 4570 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  z  =  { (/)
} )
32adantr 276 . . 3  |-  ( ( A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  /\  z  C_  { (/) } )  -> DECID  z  =  { (/)
} )
43exmid1dc 4244 . 2  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> EXMID )
51, 4impbii 126 1  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 836    \/ w3o 980    = wceq 1373   A.wral 2484    C_ wss 3166   (/)c0 3460   {csn 3633  EXMIDwem 4238   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-uni 3851  df-tr 4143  df-exmid 4239  df-iord 4413  df-on 4415  df-suc 4418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator