ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri2or Unicode version

Theorem onntri2or 7202
Description: Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
Assertion
Ref Expression
onntri2or  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Distinct variable group:    x, y

Proof of Theorem onntri2or
StepHypRef Expression
1 onntri52 7200 . . 3  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
2 onntri24 7198 . . 3  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
31, 2syl 14 . 2  |-  ( -. 
-. EXMID 
->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
4 onntri45 7197 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
53, 4impbii 125 1  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 698   A.wral 2444    C_ wss 3116  EXMIDwem 4173   Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator