ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri2or Unicode version

Theorem onntri2or 7262
Description: Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
Assertion
Ref Expression
onntri2or  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Distinct variable group:    x, y

Proof of Theorem onntri2or
StepHypRef Expression
1 onntri52 7260 . . 3  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
2 onntri24 7258 . . 3  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
31, 2syl 14 . 2  |-  ( -. 
-. EXMID 
->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
4 onntri45 7257 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
53, 4impbii 126 1  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    \/ wo 709   A.wral 2467    C_ wss 3143  EXMIDwem 4208   Oncon0 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-uni 3824  df-int 3859  df-tr 4116  df-exmid 4209  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604  df-1o 6434  df-2o 6435  df-3o 6436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator