ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri2or Unicode version

Theorem onntri2or 7296
Description: Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.)
Assertion
Ref Expression
onntri2or  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Distinct variable group:    x, y

Proof of Theorem onntri2or
StepHypRef Expression
1 onntri52 7294 . . 3  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
2 onntri24 7292 . . 3  |-  ( -. 
-.  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  ->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
31, 2syl 14 . 2  |-  ( -. 
-. EXMID 
->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
4 onntri45 7291 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
53, 4impbii 126 1  |-  ( -. 
-. EXMID  <->  A. x  e.  On  A. y  e.  On  -.  -.  ( x  C_  y  \/  y  C_  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    \/ wo 709   A.wral 2472    C_ wss 3153  EXMIDwem 4223   Oncon0 4392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-exmid 4224  df-iord 4395  df-on 4397  df-suc 4400  df-iom 4619  df-1o 6460  df-2o 6461  df-3o 6462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator