ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri2or Unicode version

Theorem exmidontri2or 7199
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri2or  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
Distinct variable group:    x, y

Proof of Theorem exmidontri2or
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7181 . . 3  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 onelss 4365 . . . . . . . 8  |-  ( y  e.  On  ->  (
x  e.  y  ->  x  C_  y ) )
32adantl 275 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  ->  x  C_  y
) )
4 orc 702 . . . . . . 7  |-  ( x 
C_  y  ->  (
x  C_  y  \/  y  C_  x ) )
53, 4syl6 33 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  ->  ( x  C_  y  \/  y  C_  x ) ) )
6 eqimss 3196 . . . . . . . 8  |-  ( x  =  y  ->  x  C_  y )
76, 4syl 14 . . . . . . 7  |-  ( x  =  y  ->  (
x  C_  y  \/  y  C_  x ) )
87a1i 9 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  =  y  ->  ( x  C_  y  \/  y  C_  x ) ) )
9 onelss 4365 . . . . . . . 8  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
109adantr 274 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( y  e.  x  ->  y  C_  x )
)
11 olc 701 . . . . . . 7  |-  ( y 
C_  x  ->  (
x  C_  y  \/  y  C_  x ) )
1210, 11syl6 33 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( y  e.  x  ->  ( x  C_  y  \/  y  C_  x ) ) )
135, 8, 123jaod 1294 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  (
x  C_  y  \/  y  C_  x ) ) )
1413ralimdva 2533 . . . 4  |-  ( x  e.  On  ->  ( A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) ) )
1514ralimia 2527 . . 3  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
161, 15syl 14 . 2  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
17 ontri2orexmidim 4549 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  -> DECID  z  =  { (/)
} )
1817adantr 274 . . 3  |-  ( ( A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  /\  z  C_  { (/) } )  -> DECID 
z  =  { (/) } )
1918exmid1dc 4179 . 2  |-  ( A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  -> EXMID )
2016, 19impbii 125 1  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    \/ w3o 967    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   (/)c0 3409   {csn 3576  EXMIDwem 4173   Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349
This theorem is referenced by:  onntri52  7200
  Copyright terms: Public domain W3C validator