ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontri2or Unicode version

Theorem exmidontri2or 7310
Description: Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
exmidontri2or  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
Distinct variable group:    x, y

Proof of Theorem exmidontri2or
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 exmidontriim 7292 . . 3  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
2 onelss 4422 . . . . . . . 8  |-  ( y  e.  On  ->  (
x  e.  y  ->  x  C_  y ) )
32adantl 277 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  ->  x  C_  y
) )
4 orc 713 . . . . . . 7  |-  ( x 
C_  y  ->  (
x  C_  y  \/  y  C_  x ) )
53, 4syl6 33 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  ->  ( x  C_  y  \/  y  C_  x ) ) )
6 eqimss 3237 . . . . . . . 8  |-  ( x  =  y  ->  x  C_  y )
76, 4syl 14 . . . . . . 7  |-  ( x  =  y  ->  (
x  C_  y  \/  y  C_  x ) )
87a1i 9 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  =  y  ->  ( x  C_  y  \/  y  C_  x ) ) )
9 onelss 4422 . . . . . . . 8  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
109adantr 276 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( y  e.  x  ->  y  C_  x )
)
11 olc 712 . . . . . . 7  |-  ( y 
C_  x  ->  (
x  C_  y  \/  y  C_  x ) )
1210, 11syl6 33 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( y  e.  x  ->  ( x  C_  y  \/  y  C_  x ) ) )
135, 8, 123jaod 1315 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  (
x  C_  y  \/  y  C_  x ) ) )
1413ralimdva 2564 . . . 4  |-  ( x  e.  On  ->  ( A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) ) )
1514ralimia 2558 . . 3  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
161, 15syl 14 . 2  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
17 ontri2orexmidim 4608 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  -> DECID  z  =  { (/)
} )
1817adantr 276 . . 3  |-  ( ( A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x )  /\  z  C_  { (/) } )  -> DECID 
z  =  { (/) } )
1918exmid1dc 4233 . 2  |-  ( A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  -> EXMID )
2016, 19impbii 126 1  |-  (EXMID  <->  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   (/)c0 3450   {csn 3622  EXMIDwem 4227   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-exmid 4228  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  onntri52  7311
  Copyright terms: Public domain W3C validator