Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onntri45 | Unicode version |
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
Ref | Expression |
---|---|
onntri45 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7203 | . . . . 5 | |
2 | 1 | onsuci 4500 | . . . 4 |
3 | 3on 6406 | . . . 4 | |
4 | sseq1 3170 | . . . . . . . 8 | |
5 | sseq2 3171 | . . . . . . . 8 | |
6 | 4, 5 | orbi12d 788 | . . . . . . 7 |
7 | 6 | notbid 662 | . . . . . 6 |
8 | 7 | notbid 662 | . . . . 5 |
9 | sseq2 3171 | . . . . . . . 8 | |
10 | sseq1 3170 | . . . . . . . 8 | |
11 | 9, 10 | orbi12d 788 | . . . . . . 7 |
12 | 11 | notbid 662 | . . . . . 6 |
13 | 12 | notbid 662 | . . . . 5 |
14 | 8, 13 | rspc2v 2847 | . . . 4 |
15 | 2, 3, 14 | mp2an 424 | . . 3 |
16 | ioran 747 | . . 3 | |
17 | 15, 16 | sylnib 671 | . 2 |
18 | sucpw1nss3 7212 | . . 3 EXMID | |
19 | 3nsssucpw1 7213 | . . 3 EXMID | |
20 | 18, 19 | jca 304 | . 2 EXMID |
21 | 17, 20 | nsyl 623 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wceq 1348 wcel 2141 wral 2448 wss 3121 cpw 3566 EXMIDwem 4180 con0 4348 csuc 4350 c1o 6388 c3o 6390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-exmid 4181 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-1o 6395 df-2o 6396 df-3o 6397 |
This theorem is referenced by: onntri2or 7223 |
Copyright terms: Public domain | W3C validator |