ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 Unicode version

Theorem onntri45 7353
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Distinct variable group:    x, y

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7338 . . . . 5  |-  ~P 1o  e.  On
21onsuci 4564 . . . 4  |-  suc  ~P 1o  e.  On
3 3on 6513 . . . 4  |-  3o  e.  On
4 sseq1 3216 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( x  C_  y  <->  suc 
~P 1o  C_  y
) )
5 sseq2 3217 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( y  C_  x  <->  y 
C_  suc  ~P 1o ) )
64, 5orbi12d 795 . . . . . . 7  |-  ( x  =  suc  ~P 1o  ->  ( ( x  C_  y  \/  y  C_  x )  <->  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
76notbid 669 . . . . . 6  |-  ( x  =  suc  ~P 1o  ->  ( -.  ( x 
C_  y  \/  y  C_  x )  <->  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
87notbid 669 . . . . 5  |-  ( x  =  suc  ~P 1o  ->  ( -.  -.  (
x  C_  y  \/  y  C_  x )  <->  -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
9 sseq2 3217 . . . . . . . 8  |-  ( y  =  3o  ->  ( suc  ~P 1o  C_  y  <->  suc 
~P 1o  C_  3o ) )
10 sseq1 3216 . . . . . . . 8  |-  ( y  =  3o  ->  (
y  C_  suc  ~P 1o  <->  3o  C_  suc  ~P 1o ) )
119, 10orbi12d 795 . . . . . . 7  |-  ( y  =  3o  ->  (
( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1211notbid 669 . . . . . 6  |-  ( y  =  3o  ->  ( -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1312notbid 669 . . . . 5  |-  ( y  =  3o  ->  ( -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_ 
suc  ~P 1o )  <->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
148, 13rspc2v 2890 . . . 4  |-  ( ( suc  ~P 1o  e.  On  /\  3o  e.  On )  ->  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) ) )
152, 3, 14mp2an 426 . . 3  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) )
16 ioran 754 . . 3  |-  ( -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o )  <->  ( -.  suc  ~P 1o  C_  3o  /\ 
-.  3o  C_  suc  ~P 1o ) )
1715, 16sylnib 678 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  ( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
18 sucpw1nss3 7347 . . 3  |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_  3o )
19 3nsssucpw1 7348 . . 3  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
2018, 19jca 306 . 2  |-  ( -. EXMID  -> 
( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
2117, 20nsyl 629 1  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ~Pcpw 3616  EXMIDwem 4238   Oncon0 4410   suc csuc 4412   1oc1o 6495   3oc3o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-exmid 4239  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-1o 6502  df-2o 6503  df-3o 6504
This theorem is referenced by:  onntri2or  7358
  Copyright terms: Public domain W3C validator