ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 Unicode version

Theorem onntri45 7197
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Distinct variable group:    x, y

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7182 . . . . 5  |-  ~P 1o  e.  On
21onsuci 4493 . . . 4  |-  suc  ~P 1o  e.  On
3 3on 6395 . . . 4  |-  3o  e.  On
4 sseq1 3165 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( x  C_  y  <->  suc 
~P 1o  C_  y
) )
5 sseq2 3166 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( y  C_  x  <->  y 
C_  suc  ~P 1o ) )
64, 5orbi12d 783 . . . . . . 7  |-  ( x  =  suc  ~P 1o  ->  ( ( x  C_  y  \/  y  C_  x )  <->  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
76notbid 657 . . . . . 6  |-  ( x  =  suc  ~P 1o  ->  ( -.  ( x 
C_  y  \/  y  C_  x )  <->  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
87notbid 657 . . . . 5  |-  ( x  =  suc  ~P 1o  ->  ( -.  -.  (
x  C_  y  \/  y  C_  x )  <->  -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
9 sseq2 3166 . . . . . . . 8  |-  ( y  =  3o  ->  ( suc  ~P 1o  C_  y  <->  suc 
~P 1o  C_  3o ) )
10 sseq1 3165 . . . . . . . 8  |-  ( y  =  3o  ->  (
y  C_  suc  ~P 1o  <->  3o  C_  suc  ~P 1o ) )
119, 10orbi12d 783 . . . . . . 7  |-  ( y  =  3o  ->  (
( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1211notbid 657 . . . . . 6  |-  ( y  =  3o  ->  ( -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1312notbid 657 . . . . 5  |-  ( y  =  3o  ->  ( -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_ 
suc  ~P 1o )  <->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
148, 13rspc2v 2843 . . . 4  |-  ( ( suc  ~P 1o  e.  On  /\  3o  e.  On )  ->  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) ) )
152, 3, 14mp2an 423 . . 3  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) )
16 ioran 742 . . 3  |-  ( -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o )  <->  ( -.  suc  ~P 1o  C_  3o  /\ 
-.  3o  C_  suc  ~P 1o ) )
1715, 16sylnib 666 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  ( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
18 sucpw1nss3 7191 . . 3  |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_  3o )
19 3nsssucpw1 7192 . . 3  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
2018, 19jca 304 . 2  |-  ( -. EXMID  -> 
( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
2117, 20nsyl 618 1  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   ~Pcpw 3559  EXMIDwem 4173   Oncon0 4341   suc csuc 4343   1oc1o 6377   3oc3o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by:  onntri2or  7202
  Copyright terms: Public domain W3C validator