| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onntri45 | Unicode version | ||
| Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| Ref | Expression |
|---|---|
| onntri45 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7411 |
. . . . 5
| |
| 2 | 1 | onsuci 4608 |
. . . 4
|
| 3 | 3on 6573 |
. . . 4
| |
| 4 | sseq1 3247 |
. . . . . . . 8
| |
| 5 | sseq2 3248 |
. . . . . . . 8
| |
| 6 | 4, 5 | orbi12d 798 |
. . . . . . 7
|
| 7 | 6 | notbid 671 |
. . . . . 6
|
| 8 | 7 | notbid 671 |
. . . . 5
|
| 9 | sseq2 3248 |
. . . . . . . 8
| |
| 10 | sseq1 3247 |
. . . . . . . 8
| |
| 11 | 9, 10 | orbi12d 798 |
. . . . . . 7
|
| 12 | 11 | notbid 671 |
. . . . . 6
|
| 13 | 12 | notbid 671 |
. . . . 5
|
| 14 | 8, 13 | rspc2v 2920 |
. . . 4
|
| 15 | 2, 3, 14 | mp2an 426 |
. . 3
|
| 16 | ioran 757 |
. . 3
| |
| 17 | 15, 16 | sylnib 680 |
. 2
|
| 18 | sucpw1nss3 7420 |
. . 3
| |
| 19 | 3nsssucpw1 7421 |
. . 3
| |
| 20 | 18, 19 | jca 306 |
. 2
|
| 21 | 17, 20 | nsyl 631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-exmid 4279 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-1o 6562 df-2o 6563 df-3o 6564 |
| This theorem is referenced by: onntri2or 7431 |
| Copyright terms: Public domain | W3C validator |