ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 Unicode version

Theorem onntri45 7243
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Distinct variable group:    x, y

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7228 . . . . 5  |-  ~P 1o  e.  On
21onsuci 4517 . . . 4  |-  suc  ~P 1o  e.  On
3 3on 6431 . . . 4  |-  3o  e.  On
4 sseq1 3180 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( x  C_  y  <->  suc 
~P 1o  C_  y
) )
5 sseq2 3181 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( y  C_  x  <->  y 
C_  suc  ~P 1o ) )
64, 5orbi12d 793 . . . . . . 7  |-  ( x  =  suc  ~P 1o  ->  ( ( x  C_  y  \/  y  C_  x )  <->  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
76notbid 667 . . . . . 6  |-  ( x  =  suc  ~P 1o  ->  ( -.  ( x 
C_  y  \/  y  C_  x )  <->  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
87notbid 667 . . . . 5  |-  ( x  =  suc  ~P 1o  ->  ( -.  -.  (
x  C_  y  \/  y  C_  x )  <->  -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
9 sseq2 3181 . . . . . . . 8  |-  ( y  =  3o  ->  ( suc  ~P 1o  C_  y  <->  suc 
~P 1o  C_  3o ) )
10 sseq1 3180 . . . . . . . 8  |-  ( y  =  3o  ->  (
y  C_  suc  ~P 1o  <->  3o  C_  suc  ~P 1o ) )
119, 10orbi12d 793 . . . . . . 7  |-  ( y  =  3o  ->  (
( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1211notbid 667 . . . . . 6  |-  ( y  =  3o  ->  ( -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1312notbid 667 . . . . 5  |-  ( y  =  3o  ->  ( -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_ 
suc  ~P 1o )  <->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
148, 13rspc2v 2856 . . . 4  |-  ( ( suc  ~P 1o  e.  On  /\  3o  e.  On )  ->  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) ) )
152, 3, 14mp2an 426 . . 3  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) )
16 ioran 752 . . 3  |-  ( -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o )  <->  ( -.  suc  ~P 1o  C_  3o  /\ 
-.  3o  C_  suc  ~P 1o ) )
1715, 16sylnib 676 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  ( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
18 sucpw1nss3 7237 . . 3  |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_  3o )
19 3nsssucpw1 7238 . . 3  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
2018, 19jca 306 . 2  |-  ( -. EXMID  -> 
( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
2117, 20nsyl 628 1  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   ~Pcpw 3577  EXMIDwem 4196   Oncon0 4365   suc csuc 4367   1oc1o 6413   3oc3o 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-exmid 4197  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-1o 6420  df-2o 6421  df-3o 6422
This theorem is referenced by:  onntri2or  7248
  Copyright terms: Public domain W3C validator