ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri45 Unicode version

Theorem onntri45 7426
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri45  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Distinct variable group:    x, y

Proof of Theorem onntri45
StepHypRef Expression
1 pw1on 7411 . . . . 5  |-  ~P 1o  e.  On
21onsuci 4608 . . . 4  |-  suc  ~P 1o  e.  On
3 3on 6573 . . . 4  |-  3o  e.  On
4 sseq1 3247 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( x  C_  y  <->  suc 
~P 1o  C_  y
) )
5 sseq2 3248 . . . . . . . 8  |-  ( x  =  suc  ~P 1o  ->  ( y  C_  x  <->  y 
C_  suc  ~P 1o ) )
64, 5orbi12d 798 . . . . . . 7  |-  ( x  =  suc  ~P 1o  ->  ( ( x  C_  y  \/  y  C_  x )  <->  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
76notbid 671 . . . . . 6  |-  ( x  =  suc  ~P 1o  ->  ( -.  ( x 
C_  y  \/  y  C_  x )  <->  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
87notbid 671 . . . . 5  |-  ( x  =  suc  ~P 1o  ->  ( -.  -.  (
x  C_  y  \/  y  C_  x )  <->  -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o ) ) )
9 sseq2 3248 . . . . . . . 8  |-  ( y  =  3o  ->  ( suc  ~P 1o  C_  y  <->  suc 
~P 1o  C_  3o ) )
10 sseq1 3247 . . . . . . . 8  |-  ( y  =  3o  ->  (
y  C_  suc  ~P 1o  <->  3o  C_  suc  ~P 1o ) )
119, 10orbi12d 798 . . . . . . 7  |-  ( y  =  3o  ->  (
( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1211notbid 671 . . . . . 6  |-  ( y  =  3o  ->  ( -.  ( suc  ~P 1o  C_  y  \/  y  C_  suc  ~P 1o )  <->  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
1312notbid 671 . . . . 5  |-  ( y  =  3o  ->  ( -.  -.  ( suc  ~P 1o  C_  y  \/  y  C_ 
suc  ~P 1o )  <->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o ) ) )
148, 13rspc2v 2920 . . . 4  |-  ( ( suc  ~P 1o  e.  On  /\  3o  e.  On )  ->  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) ) )
152, 3, 14mp2an 426 . . 3  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -.  ( suc  ~P 1o  C_  3o  \/  3o  C_ 
suc  ~P 1o ) )
16 ioran 757 . . 3  |-  ( -.  ( suc  ~P 1o  C_  3o  \/  3o  C_  suc  ~P 1o )  <->  ( -.  suc  ~P 1o  C_  3o  /\ 
-.  3o  C_  suc  ~P 1o ) )
1715, 16sylnib 680 . 2  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  ( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
18 sucpw1nss3 7420 . . 3  |-  ( -. EXMID  ->  -.  suc  ~P 1o  C_  3o )
19 3nsssucpw1 7421 . . 3  |-  ( -. EXMID  ->  -.  3o  C_  suc  ~P 1o )
2018, 19jca 306 . 2  |-  ( -. EXMID  -> 
( -.  suc  ~P 1o  C_  3o  /\  -.  3o  C_  suc  ~P 1o ) )
2117, 20nsyl 631 1  |-  ( A. x  e.  On  A. y  e.  On  -.  -.  (
x  C_  y  \/  y  C_  x )  ->  -.  -. EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ~Pcpw 3649  EXMIDwem 4278   Oncon0 4454   suc csuc 4456   1oc1o 6555   3oc3o 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-1o 6562  df-2o 6563  df-3o 6564
This theorem is referenced by:  onntri2or  7431
  Copyright terms: Public domain W3C validator