| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onntri45 | Unicode version | ||
| Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| Ref | Expression |
|---|---|
| onntri45 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7295 |
. . . . 5
| |
| 2 | 1 | onsuci 4553 |
. . . 4
|
| 3 | 3on 6486 |
. . . 4
| |
| 4 | sseq1 3207 |
. . . . . . . 8
| |
| 5 | sseq2 3208 |
. . . . . . . 8
| |
| 6 | 4, 5 | orbi12d 794 |
. . . . . . 7
|
| 7 | 6 | notbid 668 |
. . . . . 6
|
| 8 | 7 | notbid 668 |
. . . . 5
|
| 9 | sseq2 3208 |
. . . . . . . 8
| |
| 10 | sseq1 3207 |
. . . . . . . 8
| |
| 11 | 9, 10 | orbi12d 794 |
. . . . . . 7
|
| 12 | 11 | notbid 668 |
. . . . . 6
|
| 13 | 12 | notbid 668 |
. . . . 5
|
| 14 | 8, 13 | rspc2v 2881 |
. . . 4
|
| 15 | 2, 3, 14 | mp2an 426 |
. . 3
|
| 16 | ioran 753 |
. . 3
| |
| 17 | 15, 16 | sylnib 677 |
. 2
|
| 18 | sucpw1nss3 7304 |
. . 3
| |
| 19 | 3nsssucpw1 7305 |
. . 3
| |
| 20 | 18, 19 | jca 306 |
. 2
|
| 21 | 17, 20 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-exmid 4229 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-1o 6475 df-2o 6476 df-3o 6477 |
| This theorem is referenced by: onntri2or 7315 |
| Copyright terms: Public domain | W3C validator |