Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onntri45 | Unicode version |
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
Ref | Expression |
---|---|
onntri45 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7144 | . . . . 5 | |
2 | 1 | onsuci 4473 | . . . 4 |
3 | 3on 6368 | . . . 4 | |
4 | sseq1 3151 | . . . . . . . 8 | |
5 | sseq2 3152 | . . . . . . . 8 | |
6 | 4, 5 | orbi12d 783 | . . . . . . 7 |
7 | 6 | notbid 657 | . . . . . 6 |
8 | 7 | notbid 657 | . . . . 5 |
9 | sseq2 3152 | . . . . . . . 8 | |
10 | sseq1 3151 | . . . . . . . 8 | |
11 | 9, 10 | orbi12d 783 | . . . . . . 7 |
12 | 11 | notbid 657 | . . . . . 6 |
13 | 12 | notbid 657 | . . . . 5 |
14 | 8, 13 | rspc2v 2829 | . . . 4 |
15 | 2, 3, 14 | mp2an 423 | . . 3 |
16 | ioran 742 | . . 3 | |
17 | 15, 16 | sylnib 666 | . 2 |
18 | sucpw1nss3 7153 | . . 3 EXMID | |
19 | 3nsssucpw1 7154 | . . 3 EXMID | |
20 | 18, 19 | jca 304 | . 2 EXMID |
21 | 17, 20 | nsyl 618 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wceq 1335 wcel 2128 wral 2435 wss 3102 cpw 3543 EXMIDwem 4154 con0 4322 csuc 4324 c1o 6350 c3o 6352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-tr 4063 df-exmid 4155 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-1o 6357 df-2o 6358 df-3o 6359 |
This theorem is referenced by: onntri2or 7164 |
Copyright terms: Public domain | W3C validator |