| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version | ||
| Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| suc11g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4591 |
. . . 4
| |
| 2 | sucidg 4452 |
. . . . . . . . . . . 12
| |
| 3 | eleq2 2260 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . . . . . . . . 11
|
| 5 | elsucg 4440 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | sylibd 149 |
. . . . . . . . . 10
|
| 7 | 6 | imp 124 |
. . . . . . . . 9
|
| 8 | 7 | 3adant1 1017 |
. . . . . . . 8
|
| 9 | sucidg 4452 |
. . . . . . . . . . . 12
| |
| 10 | eleq2 2260 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | syl5ibcom 155 |
. . . . . . . . . . 11
|
| 12 | elsucg 4440 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | sylibd 149 |
. . . . . . . . . 10
|
| 14 | 13 | imp 124 |
. . . . . . . . 9
|
| 15 | 14 | 3adant2 1018 |
. . . . . . . 8
|
| 16 | 8, 15 | jca 306 |
. . . . . . 7
|
| 17 | eqcom 2198 |
. . . . . . . . 9
| |
| 18 | 17 | orbi2i 763 |
. . . . . . . 8
|
| 19 | 18 | anbi1i 458 |
. . . . . . 7
|
| 20 | 16, 19 | sylib 122 |
. . . . . 6
|
| 21 | ordir 818 |
. . . . . 6
| |
| 22 | 20, 21 | sylibr 134 |
. . . . 5
|
| 23 | 22 | ord 725 |
. . . 4
|
| 24 | 1, 23 | mpi 15 |
. . 3
|
| 25 | 24 | 3expia 1207 |
. 2
|
| 26 | suceq 4438 |
. 2
| |
| 27 | 25, 26 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-sn 3629 df-pr 3630 df-suc 4407 |
| This theorem is referenced by: suc11 4595 peano4 4634 frecsuclem 6473 |
| Copyright terms: Public domain | W3C validator |