| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version | ||
| Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) | 
| Ref | Expression | 
|---|---|
| suc11g | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | en2lp 4590 | 
. . . 4
 | |
| 2 | sucidg 4451 | 
. . . . . . . . . . . 12
 | |
| 3 | eleq2 2260 | 
. . . . . . . . . . . 12
 | |
| 4 | 2, 3 | syl5ibrcom 157 | 
. . . . . . . . . . 11
 | 
| 5 | elsucg 4439 | 
. . . . . . . . . . 11
 | |
| 6 | 4, 5 | sylibd 149 | 
. . . . . . . . . 10
 | 
| 7 | 6 | imp 124 | 
. . . . . . . . 9
 | 
| 8 | 7 | 3adant1 1017 | 
. . . . . . . 8
 | 
| 9 | sucidg 4451 | 
. . . . . . . . . . . 12
 | |
| 10 | eleq2 2260 | 
. . . . . . . . . . . 12
 | |
| 11 | 9, 10 | syl5ibcom 155 | 
. . . . . . . . . . 11
 | 
| 12 | elsucg 4439 | 
. . . . . . . . . . 11
 | |
| 13 | 11, 12 | sylibd 149 | 
. . . . . . . . . 10
 | 
| 14 | 13 | imp 124 | 
. . . . . . . . 9
 | 
| 15 | 14 | 3adant2 1018 | 
. . . . . . . 8
 | 
| 16 | 8, 15 | jca 306 | 
. . . . . . 7
 | 
| 17 | eqcom 2198 | 
. . . . . . . . 9
 | |
| 18 | 17 | orbi2i 763 | 
. . . . . . . 8
 | 
| 19 | 18 | anbi1i 458 | 
. . . . . . 7
 | 
| 20 | 16, 19 | sylib 122 | 
. . . . . 6
 | 
| 21 | ordir 818 | 
. . . . . 6
 | |
| 22 | 20, 21 | sylibr 134 | 
. . . . 5
 | 
| 23 | 22 | ord 725 | 
. . . 4
 | 
| 24 | 1, 23 | mpi 15 | 
. . 3
 | 
| 25 | 24 | 3expia 1207 | 
. 2
 | 
| 26 | suceq 4437 | 
. 2
 | |
| 27 | 25, 26 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-sn 3628 df-pr 3629 df-suc 4406 | 
| This theorem is referenced by: suc11 4594 peano4 4633 frecsuclem 6464 | 
| Copyright terms: Public domain | W3C validator |