Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version |
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
suc11g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4531 | . . . 4 | |
2 | sucidg 4394 | . . . . . . . . . . . 12 | |
3 | eleq2 2230 | . . . . . . . . . . . 12 | |
4 | 2, 3 | syl5ibrcom 156 | . . . . . . . . . . 11 |
5 | elsucg 4382 | . . . . . . . . . . 11 | |
6 | 4, 5 | sylibd 148 | . . . . . . . . . 10 |
7 | 6 | imp 123 | . . . . . . . . 9 |
8 | 7 | 3adant1 1005 | . . . . . . . 8 |
9 | sucidg 4394 | . . . . . . . . . . . 12 | |
10 | eleq2 2230 | . . . . . . . . . . . 12 | |
11 | 9, 10 | syl5ibcom 154 | . . . . . . . . . . 11 |
12 | elsucg 4382 | . . . . . . . . . . 11 | |
13 | 11, 12 | sylibd 148 | . . . . . . . . . 10 |
14 | 13 | imp 123 | . . . . . . . . 9 |
15 | 14 | 3adant2 1006 | . . . . . . . 8 |
16 | 8, 15 | jca 304 | . . . . . . 7 |
17 | eqcom 2167 | . . . . . . . . 9 | |
18 | 17 | orbi2i 752 | . . . . . . . 8 |
19 | 18 | anbi1i 454 | . . . . . . 7 |
20 | 16, 19 | sylib 121 | . . . . . 6 |
21 | ordir 807 | . . . . . 6 | |
22 | 20, 21 | sylibr 133 | . . . . 5 |
23 | 22 | ord 714 | . . . 4 |
24 | 1, 23 | mpi 15 | . . 3 |
25 | 24 | 3expia 1195 | . 2 |
26 | suceq 4380 | . 2 | |
27 | 25, 26 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-sn 3582 df-pr 3583 df-suc 4349 |
This theorem is referenced by: suc11 4535 peano4 4574 frecsuclem 6374 |
Copyright terms: Public domain | W3C validator |