| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version | ||
| Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| suc11g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4607 |
. . . 4
| |
| 2 | sucidg 4468 |
. . . . . . . . . . . 12
| |
| 3 | eleq2 2270 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . . . . . . . . 11
|
| 5 | elsucg 4456 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | sylibd 149 |
. . . . . . . . . 10
|
| 7 | 6 | imp 124 |
. . . . . . . . 9
|
| 8 | 7 | 3adant1 1018 |
. . . . . . . 8
|
| 9 | sucidg 4468 |
. . . . . . . . . . . 12
| |
| 10 | eleq2 2270 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | syl5ibcom 155 |
. . . . . . . . . . 11
|
| 12 | elsucg 4456 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | sylibd 149 |
. . . . . . . . . 10
|
| 14 | 13 | imp 124 |
. . . . . . . . 9
|
| 15 | 14 | 3adant2 1019 |
. . . . . . . 8
|
| 16 | 8, 15 | jca 306 |
. . . . . . 7
|
| 17 | eqcom 2208 |
. . . . . . . . 9
| |
| 18 | 17 | orbi2i 764 |
. . . . . . . 8
|
| 19 | 18 | anbi1i 458 |
. . . . . . 7
|
| 20 | 16, 19 | sylib 122 |
. . . . . 6
|
| 21 | ordir 819 |
. . . . . 6
| |
| 22 | 20, 21 | sylibr 134 |
. . . . 5
|
| 23 | 22 | ord 726 |
. . . 4
|
| 24 | 1, 23 | mpi 15 |
. . 3
|
| 25 | 24 | 3expia 1208 |
. 2
|
| 26 | suceq 4454 |
. 2
| |
| 27 | 25, 26 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3170 df-un 3172 df-sn 3641 df-pr 3642 df-suc 4423 |
| This theorem is referenced by: suc11 4611 peano4 4650 frecsuclem 6502 |
| Copyright terms: Public domain | W3C validator |