| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version | ||
| Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| suc11g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4643 |
. . . 4
| |
| 2 | sucidg 4504 |
. . . . . . . . . . . 12
| |
| 3 | eleq2 2293 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . . . . . . . . 11
|
| 5 | elsucg 4492 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | sylibd 149 |
. . . . . . . . . 10
|
| 7 | 6 | imp 124 |
. . . . . . . . 9
|
| 8 | 7 | 3adant1 1039 |
. . . . . . . 8
|
| 9 | sucidg 4504 |
. . . . . . . . . . . 12
| |
| 10 | eleq2 2293 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | syl5ibcom 155 |
. . . . . . . . . . 11
|
| 12 | elsucg 4492 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | sylibd 149 |
. . . . . . . . . 10
|
| 14 | 13 | imp 124 |
. . . . . . . . 9
|
| 15 | 14 | 3adant2 1040 |
. . . . . . . 8
|
| 16 | 8, 15 | jca 306 |
. . . . . . 7
|
| 17 | eqcom 2231 |
. . . . . . . . 9
| |
| 18 | 17 | orbi2i 767 |
. . . . . . . 8
|
| 19 | 18 | anbi1i 458 |
. . . . . . 7
|
| 20 | 16, 19 | sylib 122 |
. . . . . 6
|
| 21 | ordir 822 |
. . . . . 6
| |
| 22 | 20, 21 | sylibr 134 |
. . . . 5
|
| 23 | 22 | ord 729 |
. . . 4
|
| 24 | 1, 23 | mpi 15 |
. . 3
|
| 25 | 24 | 3expia 1229 |
. 2
|
| 26 | suceq 4490 |
. 2
| |
| 27 | 25, 26 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-sn 3672 df-pr 3673 df-suc 4459 |
| This theorem is referenced by: suc11 4647 peano4 4686 frecsuclem 6542 |
| Copyright terms: Public domain | W3C validator |