ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11g Unicode version

Theorem suc11g 4534
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem suc11g
StepHypRef Expression
1 en2lp 4531 . . . 4  |-  -.  ( B  e.  A  /\  A  e.  B )
2 sucidg 4394 . . . . . . . . . . . 12  |-  ( B  e.  W  ->  B  e.  suc  B )
3 eleq2 2230 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( B  e.  suc  A  <-> 
B  e.  suc  B
) )
42, 3syl5ibrcom 156 . . . . . . . . . . 11  |-  ( B  e.  W  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
5 elsucg 4382 . . . . . . . . . . 11  |-  ( B  e.  W  ->  ( B  e.  suc  A  <->  ( B  e.  A  \/  B  =  A ) ) )
64, 5sylibd 148 . . . . . . . . . 10  |-  ( B  e.  W  ->  ( suc  A  =  suc  B  ->  ( B  e.  A  \/  B  =  A
) ) )
76imp 123 . . . . . . . . 9  |-  ( ( B  e.  W  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
873adant1 1005 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
9 sucidg 4394 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  A  e.  suc  A )
10 eleq2 2230 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( A  e.  suc  A  <-> 
A  e.  suc  B
) )
119, 10syl5ibcom 154 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
12 elsucg 4382 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
1311, 12sylibd 148 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( suc  A  =  suc  B  ->  ( A  e.  B  \/  A  =  B
) ) )
1413imp 123 . . . . . . . . 9  |-  ( ( A  e.  V  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
15143adant2 1006 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
168, 15jca 304 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( ( B  e.  A  \/  B  =  A )  /\  ( A  e.  B  \/  A  =  B
) ) )
17 eqcom 2167 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
1817orbi2i 752 . . . . . . . 8  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( B  e.  A  \/  A  =  B )
)
1918anbi1i 454 . . . . . . 7  |-  ( ( ( B  e.  A  \/  B  =  A
)  /\  ( A  e.  B  \/  A  =  B ) )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2016, 19sylib 121 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
21 ordir 807 . . . . . 6  |-  ( ( ( B  e.  A  /\  A  e.  B
)  \/  A  =  B )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2220, 21sylibr 133 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( ( B  e.  A  /\  A  e.  B )  \/  A  =  B
) )
2322ord 714 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( -.  ( B  e.  A  /\  A  e.  B
)  ->  A  =  B ) )
241, 23mpi 15 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  A  =  B )
25243expia 1195 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
26 suceq 4380 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
2725, 26impbid1 141 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-sn 3582  df-pr 3583  df-suc 4349
This theorem is referenced by:  suc11  4535  peano4  4574  frecsuclem  6374
  Copyright terms: Public domain W3C validator