Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suc11g | Unicode version |
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
suc11g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4538 | . . . 4 | |
2 | sucidg 4401 | . . . . . . . . . . . 12 | |
3 | eleq2 2234 | . . . . . . . . . . . 12 | |
4 | 2, 3 | syl5ibrcom 156 | . . . . . . . . . . 11 |
5 | elsucg 4389 | . . . . . . . . . . 11 | |
6 | 4, 5 | sylibd 148 | . . . . . . . . . 10 |
7 | 6 | imp 123 | . . . . . . . . 9 |
8 | 7 | 3adant1 1010 | . . . . . . . 8 |
9 | sucidg 4401 | . . . . . . . . . . . 12 | |
10 | eleq2 2234 | . . . . . . . . . . . 12 | |
11 | 9, 10 | syl5ibcom 154 | . . . . . . . . . . 11 |
12 | elsucg 4389 | . . . . . . . . . . 11 | |
13 | 11, 12 | sylibd 148 | . . . . . . . . . 10 |
14 | 13 | imp 123 | . . . . . . . . 9 |
15 | 14 | 3adant2 1011 | . . . . . . . 8 |
16 | 8, 15 | jca 304 | . . . . . . 7 |
17 | eqcom 2172 | . . . . . . . . 9 | |
18 | 17 | orbi2i 757 | . . . . . . . 8 |
19 | 18 | anbi1i 455 | . . . . . . 7 |
20 | 16, 19 | sylib 121 | . . . . . 6 |
21 | ordir 812 | . . . . . 6 | |
22 | 20, 21 | sylibr 133 | . . . . 5 |
23 | 22 | ord 719 | . . . 4 |
24 | 1, 23 | mpi 15 | . . 3 |
25 | 24 | 3expia 1200 | . 2 |
26 | suceq 4387 | . 2 | |
27 | 25, 26 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-sn 3589 df-pr 3590 df-suc 4356 |
This theorem is referenced by: suc11 4542 peano4 4581 frecsuclem 6385 |
Copyright terms: Public domain | W3C validator |