ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11g Unicode version

Theorem suc11g 4589
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem suc11g
StepHypRef Expression
1 en2lp 4586 . . . 4  |-  -.  ( B  e.  A  /\  A  e.  B )
2 sucidg 4447 . . . . . . . . . . . 12  |-  ( B  e.  W  ->  B  e.  suc  B )
3 eleq2 2257 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( B  e.  suc  A  <-> 
B  e.  suc  B
) )
42, 3syl5ibrcom 157 . . . . . . . . . . 11  |-  ( B  e.  W  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
5 elsucg 4435 . . . . . . . . . . 11  |-  ( B  e.  W  ->  ( B  e.  suc  A  <->  ( B  e.  A  \/  B  =  A ) ) )
64, 5sylibd 149 . . . . . . . . . 10  |-  ( B  e.  W  ->  ( suc  A  =  suc  B  ->  ( B  e.  A  \/  B  =  A
) ) )
76imp 124 . . . . . . . . 9  |-  ( ( B  e.  W  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
873adant1 1017 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
9 sucidg 4447 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  A  e.  suc  A )
10 eleq2 2257 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( A  e.  suc  A  <-> 
A  e.  suc  B
) )
119, 10syl5ibcom 155 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
12 elsucg 4435 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
1311, 12sylibd 149 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( suc  A  =  suc  B  ->  ( A  e.  B  \/  A  =  B
) ) )
1413imp 124 . . . . . . . . 9  |-  ( ( A  e.  V  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
15143adant2 1018 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
168, 15jca 306 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( ( B  e.  A  \/  B  =  A )  /\  ( A  e.  B  \/  A  =  B
) ) )
17 eqcom 2195 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
1817orbi2i 763 . . . . . . . 8  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( B  e.  A  \/  A  =  B )
)
1918anbi1i 458 . . . . . . 7  |-  ( ( ( B  e.  A  \/  B  =  A
)  /\  ( A  e.  B  \/  A  =  B ) )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2016, 19sylib 122 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
21 ordir 818 . . . . . 6  |-  ( ( ( B  e.  A  /\  A  e.  B
)  \/  A  =  B )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2220, 21sylibr 134 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( ( B  e.  A  /\  A  e.  B )  \/  A  =  B
) )
2322ord 725 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  ( -.  ( B  e.  A  /\  A  e.  B
)  ->  A  =  B ) )
241, 23mpi 15 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  suc  A  =  suc  B
)  ->  A  =  B )
25243expia 1207 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
26 suceq 4433 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
2725, 26impbid1 142 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3155  df-un 3157  df-sn 3624  df-pr 3625  df-suc 4402
This theorem is referenced by:  suc11  4590  peano4  4629  frecsuclem  6459
  Copyright terms: Public domain W3C validator