Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano4 Unicode version

Theorem bj-peano4 13990
Description: Remove from peano4 4581 dependency on ax-setind 4521. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem bj-peano4
StepHypRef Expression
1 3simpa 989 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( A  e. 
om  /\  B  e.  om ) )
2 pm3.22 263 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  om  /\  A  e.  om )
)
3 bj-nnen2lp 13989 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  -.  ( B  e.  A  /\  A  e.  B ) )
41, 2, 33syl 17 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  -.  ( B  e.  A  /\  A  e.  B ) )
5 sucidg 4401 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  B  e.  suc  B )
6 eleq2 2234 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( B  e.  suc  A  <-> 
B  e.  suc  B
) )
75, 6syl5ibrcom 156 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
8 elsucg 4389 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( B  e.  suc  A  <->  ( B  e.  A  \/  B  =  A ) ) )
97, 8sylibd 148 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( suc  A  =  suc  B  ->  ( B  e.  A  \/  B  =  A
) ) )
109imp 123 . . . . . . . . 9  |-  ( ( B  e.  om  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
11103adant1 1010 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( B  e.  A  \/  B  =  A ) )
12 sucidg 4401 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
13 eleq2 2234 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( A  e.  suc  A  <-> 
A  e.  suc  B
) )
1412, 13syl5ibcom 154 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
15 elsucg 4389 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
1614, 15sylibd 148 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( suc  A  =  suc  B  ->  ( A  e.  B  \/  A  =  B
) ) )
1716imp 123 . . . . . . . . 9  |-  ( ( A  e.  om  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
18173adant2 1011 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( A  e.  B  \/  A  =  B ) )
1911, 18jca 304 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  \/  B  =  A )  /\  ( A  e.  B  \/  A  =  B )
) )
20 eqcom 2172 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
2120orbi2i 757 . . . . . . . 8  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( B  e.  A  \/  A  =  B )
)
2221anbi1i 455 . . . . . . 7  |-  ( ( ( B  e.  A  \/  B  =  A
)  /\  ( A  e.  B  \/  A  =  B ) )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2319, 22sylib 121 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B )
) )
24 ordir 812 . . . . . 6  |-  ( ( ( B  e.  A  /\  A  e.  B
)  \/  A  =  B )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2523, 24sylibr 133 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  /\  A  e.  B )  \/  A  =  B ) )
2625ord 719 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( -.  ( B  e.  A  /\  A  e.  B )  ->  A  =  B ) )
274, 26mpd 13 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  A  =  B )
28273expia 1200 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
29 suceq 4387 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
3028, 29impbid1 141 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdn 13852  ax-bdal 13853  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-infvn 13976
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator