| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano4 | Unicode version | ||
| Description: Remove from peano4 4646 dependency on ax-setind 4586. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-peano4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 |
. . . . 5
| |
| 2 | pm3.22 265 |
. . . . 5
| |
| 3 | bj-nnen2lp 15927 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . . 4
|
| 5 | sucidg 4464 |
. . . . . . . . . . . 12
| |
| 6 | eleq2 2269 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | syl5ibrcom 157 |
. . . . . . . . . . 11
|
| 8 | elsucg 4452 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | sylibd 149 |
. . . . . . . . . 10
|
| 10 | 9 | imp 124 |
. . . . . . . . 9
|
| 11 | 10 | 3adant1 1018 |
. . . . . . . 8
|
| 12 | sucidg 4464 |
. . . . . . . . . . . 12
| |
| 13 | eleq2 2269 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | syl5ibcom 155 |
. . . . . . . . . . 11
|
| 15 | elsucg 4452 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylibd 149 |
. . . . . . . . . 10
|
| 17 | 16 | imp 124 |
. . . . . . . . 9
|
| 18 | 17 | 3adant2 1019 |
. . . . . . . 8
|
| 19 | 11, 18 | jca 306 |
. . . . . . 7
|
| 20 | eqcom 2207 |
. . . . . . . . 9
| |
| 21 | 20 | orbi2i 764 |
. . . . . . . 8
|
| 22 | 21 | anbi1i 458 |
. . . . . . 7
|
| 23 | 19, 22 | sylib 122 |
. . . . . 6
|
| 24 | ordir 819 |
. . . . . 6
| |
| 25 | 23, 24 | sylibr 134 |
. . . . 5
|
| 26 | 25 | ord 726 |
. . . 4
|
| 27 | 4, 26 | mpd 13 |
. . 3
|
| 28 | 27 | 3expia 1208 |
. 2
|
| 29 | suceq 4450 |
. 2
| |
| 30 | 28, 29 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4171 ax-pr 4254 ax-un 4481 ax-bd0 15786 ax-bdor 15789 ax-bdn 15790 ax-bdal 15791 ax-bdex 15792 ax-bdeq 15793 ax-bdel 15794 ax-bdsb 15795 ax-bdsep 15857 ax-infvn 15914 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4419 df-iom 4640 df-bdc 15814 df-bj-ind 15900 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |