Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano4 Unicode version

Theorem bj-peano4 14792
Description: Remove from peano4 4598 dependency on ax-setind 4538. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem bj-peano4
StepHypRef Expression
1 3simpa 994 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( A  e. 
om  /\  B  e.  om ) )
2 pm3.22 265 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  om  /\  A  e.  om )
)
3 bj-nnen2lp 14791 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  -.  ( B  e.  A  /\  A  e.  B ) )
41, 2, 33syl 17 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  -.  ( B  e.  A  /\  A  e.  B ) )
5 sucidg 4418 . . . . . . . . . . . 12  |-  ( B  e.  om  ->  B  e.  suc  B )
6 eleq2 2241 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( B  e.  suc  A  <-> 
B  e.  suc  B
) )
75, 6syl5ibrcom 157 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
8 elsucg 4406 . . . . . . . . . . 11  |-  ( B  e.  om  ->  ( B  e.  suc  A  <->  ( B  e.  A  \/  B  =  A ) ) )
97, 8sylibd 149 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( suc  A  =  suc  B  ->  ( B  e.  A  \/  B  =  A
) ) )
109imp 124 . . . . . . . . 9  |-  ( ( B  e.  om  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
11103adant1 1015 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( B  e.  A  \/  B  =  A ) )
12 sucidg 4418 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
13 eleq2 2241 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( A  e.  suc  A  <-> 
A  e.  suc  B
) )
1412, 13syl5ibcom 155 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
15 elsucg 4406 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
1614, 15sylibd 149 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( suc  A  =  suc  B  ->  ( A  e.  B  \/  A  =  B
) ) )
1716imp 124 . . . . . . . . 9  |-  ( ( A  e.  om  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
18173adant2 1016 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( A  e.  B  \/  A  =  B ) )
1911, 18jca 306 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  \/  B  =  A )  /\  ( A  e.  B  \/  A  =  B )
) )
20 eqcom 2179 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
2120orbi2i 762 . . . . . . . 8  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( B  e.  A  \/  A  =  B )
)
2221anbi1i 458 . . . . . . 7  |-  ( ( ( B  e.  A  \/  B  =  A
)  /\  ( A  e.  B  \/  A  =  B ) )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2319, 22sylib 122 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B )
) )
24 ordir 817 . . . . . 6  |-  ( ( ( B  e.  A  /\  A  e.  B
)  \/  A  =  B )  <->  ( ( B  e.  A  \/  A  =  B )  /\  ( A  e.  B  \/  A  =  B
) ) )
2523, 24sylibr 134 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( ( B  e.  A  /\  A  e.  B )  \/  A  =  B ) )
2625ord 724 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  ( -.  ( B  e.  A  /\  A  e.  B )  ->  A  =  B ) )
274, 26mpd 13 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  suc  A  =  suc  B )  ->  A  =  B )
28273expia 1205 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
29 suceq 4404 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
3028, 29impbid1 142 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   suc csuc 4367   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14650  ax-bdor 14653  ax-bdn 14654  ax-bdal 14655  ax-bdex 14656  ax-bdeq 14657  ax-bdel 14658  ax-bdsb 14659  ax-bdsep 14721  ax-infvn 14778
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14678  df-bj-ind 14764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator