Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano4 | Unicode version |
Description: Remove from peano4 4554 dependency on ax-setind 4494. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-peano4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 979 | . . . . 5 | |
2 | pm3.22 263 | . . . . 5 | |
3 | bj-nnen2lp 13488 | . . . . 5 | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 |
5 | sucidg 4375 | . . . . . . . . . . . 12 | |
6 | eleq2 2221 | . . . . . . . . . . . 12 | |
7 | 5, 6 | syl5ibrcom 156 | . . . . . . . . . . 11 |
8 | elsucg 4363 | . . . . . . . . . . 11 | |
9 | 7, 8 | sylibd 148 | . . . . . . . . . 10 |
10 | 9 | imp 123 | . . . . . . . . 9 |
11 | 10 | 3adant1 1000 | . . . . . . . 8 |
12 | sucidg 4375 | . . . . . . . . . . . 12 | |
13 | eleq2 2221 | . . . . . . . . . . . 12 | |
14 | 12, 13 | syl5ibcom 154 | . . . . . . . . . . 11 |
15 | elsucg 4363 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylibd 148 | . . . . . . . . . 10 |
17 | 16 | imp 123 | . . . . . . . . 9 |
18 | 17 | 3adant2 1001 | . . . . . . . 8 |
19 | 11, 18 | jca 304 | . . . . . . 7 |
20 | eqcom 2159 | . . . . . . . . 9 | |
21 | 20 | orbi2i 752 | . . . . . . . 8 |
22 | 21 | anbi1i 454 | . . . . . . 7 |
23 | 19, 22 | sylib 121 | . . . . . 6 |
24 | ordir 807 | . . . . . 6 | |
25 | 23, 24 | sylibr 133 | . . . . 5 |
26 | 25 | ord 714 | . . . 4 |
27 | 4, 26 | mpd 13 | . . 3 |
28 | 27 | 3expia 1187 | . 2 |
29 | suceq 4361 | . 2 | |
30 | 28, 29 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1335 wcel 2128 csuc 4324 com 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-nul 4090 ax-pr 4168 ax-un 4392 ax-bd0 13347 ax-bdor 13350 ax-bdn 13351 ax-bdal 13352 ax-bdex 13353 ax-bdeq 13354 ax-bdel 13355 ax-bdsb 13356 ax-bdsep 13418 ax-infvn 13475 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4330 df-iom 4548 df-bdc 13375 df-bj-ind 13461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |