Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano4 | Unicode version |
Description: Remove from peano4 4574 dependency on ax-setind 4514. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-peano4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 984 | . . . . 5 | |
2 | pm3.22 263 | . . . . 5 | |
3 | bj-nnen2lp 13836 | . . . . 5 | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 |
5 | sucidg 4394 | . . . . . . . . . . . 12 | |
6 | eleq2 2230 | . . . . . . . . . . . 12 | |
7 | 5, 6 | syl5ibrcom 156 | . . . . . . . . . . 11 |
8 | elsucg 4382 | . . . . . . . . . . 11 | |
9 | 7, 8 | sylibd 148 | . . . . . . . . . 10 |
10 | 9 | imp 123 | . . . . . . . . 9 |
11 | 10 | 3adant1 1005 | . . . . . . . 8 |
12 | sucidg 4394 | . . . . . . . . . . . 12 | |
13 | eleq2 2230 | . . . . . . . . . . . 12 | |
14 | 12, 13 | syl5ibcom 154 | . . . . . . . . . . 11 |
15 | elsucg 4382 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylibd 148 | . . . . . . . . . 10 |
17 | 16 | imp 123 | . . . . . . . . 9 |
18 | 17 | 3adant2 1006 | . . . . . . . 8 |
19 | 11, 18 | jca 304 | . . . . . . 7 |
20 | eqcom 2167 | . . . . . . . . 9 | |
21 | 20 | orbi2i 752 | . . . . . . . 8 |
22 | 21 | anbi1i 454 | . . . . . . 7 |
23 | 19, 22 | sylib 121 | . . . . . 6 |
24 | ordir 807 | . . . . . 6 | |
25 | 23, 24 | sylibr 133 | . . . . 5 |
26 | 25 | ord 714 | . . . 4 |
27 | 4, 26 | mpd 13 | . . 3 |
28 | 27 | 3expia 1195 | . 2 |
29 | suceq 4380 | . 2 | |
30 | 28, 29 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdn 13699 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |