Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano4 | Unicode version |
Description: Remove from peano4 4581 dependency on ax-setind 4521. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-peano4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 989 | . . . . 5 | |
2 | pm3.22 263 | . . . . 5 | |
3 | bj-nnen2lp 13989 | . . . . 5 | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 |
5 | sucidg 4401 | . . . . . . . . . . . 12 | |
6 | eleq2 2234 | . . . . . . . . . . . 12 | |
7 | 5, 6 | syl5ibrcom 156 | . . . . . . . . . . 11 |
8 | elsucg 4389 | . . . . . . . . . . 11 | |
9 | 7, 8 | sylibd 148 | . . . . . . . . . 10 |
10 | 9 | imp 123 | . . . . . . . . 9 |
11 | 10 | 3adant1 1010 | . . . . . . . 8 |
12 | sucidg 4401 | . . . . . . . . . . . 12 | |
13 | eleq2 2234 | . . . . . . . . . . . 12 | |
14 | 12, 13 | syl5ibcom 154 | . . . . . . . . . . 11 |
15 | elsucg 4389 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylibd 148 | . . . . . . . . . 10 |
17 | 16 | imp 123 | . . . . . . . . 9 |
18 | 17 | 3adant2 1011 | . . . . . . . 8 |
19 | 11, 18 | jca 304 | . . . . . . 7 |
20 | eqcom 2172 | . . . . . . . . 9 | |
21 | 20 | orbi2i 757 | . . . . . . . 8 |
22 | 21 | anbi1i 455 | . . . . . . 7 |
23 | 19, 22 | sylib 121 | . . . . . 6 |
24 | ordir 812 | . . . . . 6 | |
25 | 23, 24 | sylibr 133 | . . . . 5 |
26 | 25 | ord 719 | . . . 4 |
27 | 4, 26 | mpd 13 | . . 3 |
28 | 27 | 3expia 1200 | . 2 |
29 | suceq 4387 | . 2 | |
30 | 28, 29 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdn 13852 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |