ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71d Unicode version

Theorem pm4.71d 393
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
pm4.71rd.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
pm4.71d  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ch ) ) )

Proof of Theorem pm4.71d
StepHypRef Expression
1 pm4.71rd.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 pm4.71 389 . 2  |-  ( ( ps  ->  ch )  <->  ( ps  <->  ( ps  /\  ch ) ) )
31, 2sylib 122 1  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  difin2  3399  resopab2  4956  fcnvres  5401  resoprab2  5975  cndis  13881  cnpdis  13882  blpnf  14040
  Copyright terms: Public domain W3C validator