| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fcnvres | Unicode version | ||
| Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.) | 
| Ref | Expression | 
|---|---|
| fcnvres | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relcnv 5047 | 
. 2
 | |
| 2 | relres 4974 | 
. 2
 | |
| 3 | opelf 5429 | 
. . . . . . 7
 | |
| 4 | 3 | simpld 112 | 
. . . . . 6
 | 
| 5 | 4 | ex 115 | 
. . . . 5
 | 
| 6 | 5 | pm4.71d 393 | 
. . . 4
 | 
| 7 | vex 2766 | 
. . . . . 6
 | |
| 8 | vex 2766 | 
. . . . . 6
 | |
| 9 | 7, 8 | opelcnv 4848 | 
. . . . 5
 | 
| 10 | 7 | opelres 4951 | 
. . . . 5
 | 
| 11 | 9, 10 | bitri 184 | 
. . . 4
 | 
| 12 | 6, 11 | bitr4di 198 | 
. . 3
 | 
| 13 | 3 | simprd 114 | 
. . . . . 6
 | 
| 14 | 13 | ex 115 | 
. . . . 5
 | 
| 15 | 14 | pm4.71d 393 | 
. . . 4
 | 
| 16 | 8 | opelres 4951 | 
. . . . 5
 | 
| 17 | 7, 8 | opelcnv 4848 | 
. . . . . 6
 | 
| 18 | 17 | anbi1i 458 | 
. . . . 5
 | 
| 19 | 16, 18 | bitri 184 | 
. . . 4
 | 
| 20 | 15, 19 | bitr4di 198 | 
. . 3
 | 
| 21 | 12, 20 | bitr3d 190 | 
. 2
 | 
| 22 | 1, 2, 21 | eqrelrdv 4759 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-fun 5260 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |