Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcnvres | Unicode version |
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.) |
Ref | Expression |
---|---|
fcnvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . 2 | |
2 | relres 4919 | . 2 | |
3 | opelf 5369 | . . . . . . 7 | |
4 | 3 | simpld 111 | . . . . . 6 |
5 | 4 | ex 114 | . . . . 5 |
6 | 5 | pm4.71d 391 | . . . 4 |
7 | vex 2733 | . . . . . 6 | |
8 | vex 2733 | . . . . . 6 | |
9 | 7, 8 | opelcnv 4793 | . . . . 5 |
10 | 7 | opelres 4896 | . . . . 5 |
11 | 9, 10 | bitri 183 | . . . 4 |
12 | 6, 11 | bitr4di 197 | . . 3 |
13 | 3 | simprd 113 | . . . . . 6 |
14 | 13 | ex 114 | . . . . 5 |
15 | 14 | pm4.71d 391 | . . . 4 |
16 | 8 | opelres 4896 | . . . . 5 |
17 | 7, 8 | opelcnv 4793 | . . . . . 6 |
18 | 17 | anbi1i 455 | . . . . 5 |
19 | 16, 18 | bitri 183 | . . . 4 |
20 | 15, 19 | bitr4di 197 | . . 3 |
21 | 12, 20 | bitr3d 189 | . 2 |
22 | 1, 2, 21 | eqrelrdv 4707 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3586 ccnv 4610 cres 4613 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-fun 5200 df-fn 5201 df-f 5202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |