Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcnvres | Unicode version |
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.) |
Ref | Expression |
---|---|
fcnvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . 2 | |
2 | relres 4912 | . 2 | |
3 | opelf 5359 | . . . . . . 7 | |
4 | 3 | simpld 111 | . . . . . 6 |
5 | 4 | ex 114 | . . . . 5 |
6 | 5 | pm4.71d 391 | . . . 4 |
7 | vex 2729 | . . . . . 6 | |
8 | vex 2729 | . . . . . 6 | |
9 | 7, 8 | opelcnv 4786 | . . . . 5 |
10 | 7 | opelres 4889 | . . . . 5 |
11 | 9, 10 | bitri 183 | . . . 4 |
12 | 6, 11 | bitr4di 197 | . . 3 |
13 | 3 | simprd 113 | . . . . . 6 |
14 | 13 | ex 114 | . . . . 5 |
15 | 14 | pm4.71d 391 | . . . 4 |
16 | 8 | opelres 4889 | . . . . 5 |
17 | 7, 8 | opelcnv 4786 | . . . . . 6 |
18 | 17 | anbi1i 454 | . . . . 5 |
19 | 16, 18 | bitri 183 | . . . 4 |
20 | 15, 19 | bitr4di 197 | . . 3 |
21 | 12, 20 | bitr3d 189 | . 2 |
22 | 1, 2, 21 | eqrelrdv 4700 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cop 3579 ccnv 4603 cres 4606 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |