ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin2 Unicode version

Theorem difin2 3435
Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )

Proof of Theorem difin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . . 5  |-  ( A 
C_  C  ->  (
x  e.  A  ->  x  e.  C )
)
21pm4.71d 393 . . . 4  |-  ( A 
C_  C  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  C ) ) )
32anbi1d 465 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  /\  -.  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B )
) )
4 eldif 3175 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 elin 3356 . . . 4  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( x  e.  ( C  \  B
)  /\  x  e.  A ) )
6 eldif 3175 . . . . 5  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
76anbi1i 458 . . . 4  |-  ( ( x  e.  ( C 
\  B )  /\  x  e.  A )  <->  ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A ) )
8 ancom 266 . . . . 5  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
9 anass 401 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
108, 9bitr4i 187 . . . 4  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
115, 7, 103bitri 206 . . 3  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
123, 4, 113bitr4g 223 . 2  |-  ( A 
C_  C  ->  (
x  e.  ( A 
\  B )  <->  x  e.  ( ( C  \  B )  i^i  A
) ) )
1312eqrdv 2203 1  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    \ cdif 3163    i^i cin 3165    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator