ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin2 Unicode version

Theorem difin2 3259
Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )

Proof of Theorem difin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3017 . . . . 5  |-  ( A 
C_  C  ->  (
x  e.  A  ->  x  e.  C )
)
21pm4.71d 385 . . . 4  |-  ( A 
C_  C  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  C ) ) )
32anbi1d 453 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  /\  -.  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B )
) )
4 eldif 3006 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 elin 3181 . . . 4  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( x  e.  ( C  \  B
)  /\  x  e.  A ) )
6 eldif 3006 . . . . 5  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
76anbi1i 446 . . . 4  |-  ( ( x  e.  ( C 
\  B )  /\  x  e.  A )  <->  ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A ) )
8 ancom 262 . . . . 5  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
9 anass 393 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
108, 9bitr4i 185 . . . 4  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
115, 7, 103bitri 204 . . 3  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
123, 4, 113bitr4g 221 . 2  |-  ( A 
C_  C  ->  (
x  e.  ( A 
\  B )  <->  x  e.  ( ( C  \  B )  i^i  A
) ) )
1312eqrdv 2086 1  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438    \ cdif 2994    i^i cin 2996    C_ wss 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 2999  df-in 3003  df-ss 3010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator