ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin2 Unicode version

Theorem difin2 3434
Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )

Proof of Theorem difin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3186 . . . . 5  |-  ( A 
C_  C  ->  (
x  e.  A  ->  x  e.  C )
)
21pm4.71d 393 . . . 4  |-  ( A 
C_  C  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  C ) ) )
32anbi1d 465 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  /\  -.  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B )
) )
4 eldif 3174 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 elin 3355 . . . 4  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( x  e.  ( C  \  B
)  /\  x  e.  A ) )
6 eldif 3174 . . . . 5  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
76anbi1i 458 . . . 4  |-  ( ( x  e.  ( C 
\  B )  /\  x  e.  A )  <->  ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A ) )
8 ancom 266 . . . . 5  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
9 anass 401 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
108, 9bitr4i 187 . . . 4  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
115, 7, 103bitri 206 . . 3  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
123, 4, 113bitr4g 223 . 2  |-  ( A 
C_  C  ->  (
x  e.  ( A 
\  B )  <->  x  e.  ( ( C  \  B )  i^i  A
) ) )
1312eqrdv 2202 1  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    \ cdif 3162    i^i cin 3164    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator