ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab2 Unicode version

Theorem resoprab2 6065
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
resoprab2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab2
StepHypRef Expression
1 resoprab 6064 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
2 anass 401 . . . 4  |-  ( ( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  /\  ph )  <->  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
3 an4 586 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( x  e.  A  /\  y  e.  B ) )  <->  ( (
x  e.  C  /\  x  e.  A )  /\  ( y  e.  D  /\  y  e.  B
) ) )
4 ssel 3195 . . . . . . . . 9  |-  ( C 
C_  A  ->  (
x  e.  C  ->  x  e.  A )
)
54pm4.71d 393 . . . . . . . 8  |-  ( C 
C_  A  ->  (
x  e.  C  <->  ( x  e.  C  /\  x  e.  A ) ) )
65bicomd 141 . . . . . . 7  |-  ( C 
C_  A  ->  (
( x  e.  C  /\  x  e.  A
)  <->  x  e.  C
) )
7 ssel 3195 . . . . . . . . 9  |-  ( D 
C_  B  ->  (
y  e.  D  -> 
y  e.  B ) )
87pm4.71d 393 . . . . . . . 8  |-  ( D 
C_  B  ->  (
y  e.  D  <->  ( y  e.  D  /\  y  e.  B ) ) )
98bicomd 141 . . . . . . 7  |-  ( D 
C_  B  ->  (
( y  e.  D  /\  y  e.  B
)  <->  y  e.  D
) )
106, 9bi2anan9 606 . . . . . 6  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  x  e.  A )  /\  (
y  e.  D  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
113, 10bitrid 192 . . . . 5  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
1211anbi1d 465 . . . 4  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( ( x  e.  C  /\  y  e.  D )  /\  ( x  e.  A  /\  y  e.  B
) )  /\  ph ) 
<->  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
132, 12bitr3id 194 . . 3  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) )  <-> 
( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
1413oprabbidv 6022 . 2  |-  ( ( C  C_  A  /\  D  C_  B )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) ) }  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
151, 14eqtrid 2252 1  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174    X. cxp 4691    |` cres 4695   {coprab 5968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-rel 4700  df-res 4705  df-oprab 5971
This theorem is referenced by:  resmpo  6066
  Copyright terms: Public domain W3C validator