Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resoprab2 | Unicode version |
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
resoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab 5938 | . 2 | |
2 | anass 399 | . . . 4 | |
3 | an4 576 | . . . . . 6 | |
4 | ssel 3136 | . . . . . . . . 9 | |
5 | 4 | pm4.71d 391 | . . . . . . . 8 |
6 | 5 | bicomd 140 | . . . . . . 7 |
7 | ssel 3136 | . . . . . . . . 9 | |
8 | 7 | pm4.71d 391 | . . . . . . . 8 |
9 | 8 | bicomd 140 | . . . . . . 7 |
10 | 6, 9 | bi2anan9 596 | . . . . . 6 |
11 | 3, 10 | syl5bb 191 | . . . . 5 |
12 | 11 | anbi1d 461 | . . . 4 |
13 | 2, 12 | bitr3id 193 | . . 3 |
14 | 13 | oprabbidv 5896 | . 2 |
15 | 1, 14 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wss 3116 cxp 4602 cres 4606 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 df-res 4616 df-oprab 5846 |
This theorem is referenced by: resmpo 5940 |
Copyright terms: Public domain | W3C validator |