ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cndis Unicode version

Theorem cndis 12588
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  ( ~P A  Cn  J
)  =  ( X  ^m  A ) )

Proof of Theorem cndis
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 4942 . . . . . . . 8  |-  ( `' f " x ) 
C_  dom  f
2 fdm 5318 . . . . . . . . 9  |-  ( f : A --> X  ->  dom  f  =  A
)
32adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  dom  f  =  A )
41, 3sseqtrid 3174 . . . . . . 7  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  ( `' f
" x )  C_  A )
5 elpw2g 4113 . . . . . . . 8  |-  ( A  e.  V  ->  (
( `' f "
x )  e.  ~P A 
<->  ( `' f "
x )  C_  A
) )
65ad2antrr 480 . . . . . . 7  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  ( ( `' f " x )  e.  ~P A  <->  ( `' f " x )  C_  A ) )
74, 6mpbird 166 . . . . . 6  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  ( `' f
" x )  e. 
~P A )
87ralrimivw 2528 . . . . 5  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  A. x  e.  J  ( `' f " x
)  e.  ~P A
)
98ex 114 . . . 4  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f : A --> X  ->  A. x  e.  J  ( `' f " x
)  e.  ~P A
) )
109pm4.71d 391 . . 3  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f : A --> X  <->  ( f : A --> X  /\  A. x  e.  J  ( `' f " x
)  e.  ~P A
) ) )
11 toponmax 12370 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
12 id 19 . . . 4  |-  ( A  e.  V  ->  A  e.  V )
13 elmapg 6595 . . . 4  |-  ( ( X  e.  J  /\  A  e.  V )  ->  ( f  e.  ( X  ^m  A )  <-> 
f : A --> X ) )
1411, 12, 13syl2anr 288 . . 3  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f  e.  ( X  ^m  A )  <->  f : A
--> X ) )
15 distopon 12434 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  (TopOn `  A
) )
16 iscn 12544 . . . 4  |-  ( ( ~P A  e.  (TopOn `  A )  /\  J  e.  (TopOn `  X )
)  ->  ( f  e.  ( ~P A  Cn  J )  <->  ( f : A --> X  /\  A. x  e.  J  ( `' f " x
)  e.  ~P A
) ) )
1715, 16sylan 281 . . 3  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f  e.  ( ~P A  Cn  J )  <-> 
( f : A --> X  /\  A. x  e.  J  ( `' f
" x )  e. 
~P A ) ) )
1810, 14, 173bitr4rd 220 . 2  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f  e.  ( ~P A  Cn  J )  <-> 
f  e.  ( X  ^m  A ) ) )
1918eqrdv 2152 1  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  ( ~P A  Cn  J
)  =  ( X  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   A.wral 2432    C_ wss 3098   ~Pcpw 3539   `'ccnv 4578   dom cdm 4579   "cima 4582   -->wf 5159   ` cfv 5163  (class class class)co 5814    ^m cmap 6582  TopOnctopon 12355    Cn ccn 12532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-map 6584  df-top 12343  df-topon 12356  df-cn 12535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator