ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cndis Unicode version

Theorem cndis 14828
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  ( ~P A  Cn  J
)  =  ( X  ^m  A ) )

Proof of Theorem cndis
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5064 . . . . . . . 8  |-  ( `' f " x ) 
C_  dom  f
2 fdm 5451 . . . . . . . . 9  |-  ( f : A --> X  ->  dom  f  =  A
)
32adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  dom  f  =  A )
41, 3sseqtrid 3251 . . . . . . 7  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  ( `' f
" x )  C_  A )
5 elpw2g 4216 . . . . . . . 8  |-  ( A  e.  V  ->  (
( `' f "
x )  e.  ~P A 
<->  ( `' f "
x )  C_  A
) )
65ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  ( ( `' f " x )  e.  ~P A  <->  ( `' f " x )  C_  A ) )
74, 6mpbird 167 . . . . . 6  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  ( `' f
" x )  e. 
~P A )
87ralrimivw 2582 . . . . 5  |-  ( ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  /\  f : A --> X )  ->  A. x  e.  J  ( `' f " x
)  e.  ~P A
)
98ex 115 . . . 4  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f : A --> X  ->  A. x  e.  J  ( `' f " x
)  e.  ~P A
) )
109pm4.71d 393 . . 3  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f : A --> X  <->  ( f : A --> X  /\  A. x  e.  J  ( `' f " x
)  e.  ~P A
) ) )
11 toponmax 14612 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
12 id 19 . . . 4  |-  ( A  e.  V  ->  A  e.  V )
13 elmapg 6771 . . . 4  |-  ( ( X  e.  J  /\  A  e.  V )  ->  ( f  e.  ( X  ^m  A )  <-> 
f : A --> X ) )
1411, 12, 13syl2anr 290 . . 3  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f  e.  ( X  ^m  A )  <->  f : A
--> X ) )
15 distopon 14674 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  (TopOn `  A
) )
16 iscn 14784 . . . 4  |-  ( ( ~P A  e.  (TopOn `  A )  /\  J  e.  (TopOn `  X )
)  ->  ( f  e.  ( ~P A  Cn  J )  <->  ( f : A --> X  /\  A. x  e.  J  ( `' f " x
)  e.  ~P A
) ) )
1715, 16sylan 283 . . 3  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f  e.  ( ~P A  Cn  J )  <-> 
( f : A --> X  /\  A. x  e.  J  ( `' f
" x )  e. 
~P A ) ) )
1810, 14, 173bitr4rd 221 . 2  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  (
f  e.  ( ~P A  Cn  J )  <-> 
f  e.  ( X  ^m  A ) ) )
1918eqrdv 2205 1  |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X
) )  ->  ( ~P A  Cn  J
)  =  ( X  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   ~Pcpw 3626   `'ccnv 4692   dom cdm 4693   "cima 4696   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^m cmap 6758  TopOnctopon 14597    Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator