ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab2 Unicode version

Theorem resopab2 4993
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.)
Assertion
Ref Expression
resopab2  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab2
StepHypRef Expression
1 resopab 4990 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) }
2 ssel 3177 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
32pm4.71d 393 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  B ) ) )
43anbi1d 465 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  ph ) ) )
5 anass 401 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) )
64, 5bitr2di 197 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  ph )
) )
76opabbidv 4099 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ( x  e.  B  /\  ph ) ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
81, 7eqtrid 2241 1  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   {copab 4093    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  resmpt  4994
  Copyright terms: Public domain W3C validator