ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resopab2 Unicode version

Theorem resopab2 4774
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.)
Assertion
Ref Expression
resopab2  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab2
StepHypRef Expression
1 resopab 4771 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) }
2 ssel 3022 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
32pm4.71d 386 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  B ) ) )
43anbi1d 454 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  ph ) ) )
5 anass 394 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  (
x  e.  B  /\  ph ) ) )
64, 5syl6rbb 196 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  ph )
) )
76opabbidv 3912 . 2  |-  ( A 
C_  B  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ( x  e.  B  /\  ph ) ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
81, 7syl5eq 2133 1  |-  ( A 
C_  B  ->  ( { <. x ,  y
>.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    C_ wss 3002   {copab 3906    |` cres 4456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-opab 3908  df-xp 4460  df-rel 4461  df-res 4466
This theorem is referenced by:  resmpt  4775
  Copyright terms: Public domain W3C validator