ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpdis Unicode version

Theorem cnpdis 12450
Description: If  A is an isolated point in  X (or equivalently, the singleton  { A } is open in  X), then every function is continuous at  A. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )

Proof of Theorem cnpdis
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 525 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  e.  J
)
2 simpll3 1023 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  X )
3 snidg 3561 . . . . . . . . 9  |-  ( A  e.  X  ->  A  e.  { A } )
42, 3syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  { A } )
5 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( f `  A
)  e.  x )
6 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
f : X --> Y )
7 ffn 5280 . . . . . . . . . . 11  |-  ( f : X --> Y  -> 
f  Fn  X )
8 elpreima 5547 . . . . . . . . . . 11  |-  ( f  Fn  X  ->  ( A  e.  ( `' f " x )  <->  ( A  e.  X  /\  (
f `  A )  e.  x ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( A  e.  ( `' f " x
)  <->  ( A  e.  X  /\  ( f `
 A )  e.  x ) ) )
102, 5, 9mpbir2and 929 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  ( `' f " x ) )
1110snssd 3673 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  C_  ( `' f " x
) )
12 eleq2 2204 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( A  e.  y  <-> 
A  e.  { A } ) )
13 sseq1 3125 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( y  C_  ( `' f " x
)  <->  { A }  C_  ( `' f " x
) ) )
1412, 13anbi12d 465 . . . . . . . . 9  |-  ( y  =  { A }  ->  ( ( A  e.  y  /\  y  C_  ( `' f " x
) )  <->  ( A  e.  { A }  /\  { A }  C_  ( `' f " x
) ) ) )
1514rspcev 2793 . . . . . . . 8  |-  ( ( { A }  e.  J  /\  ( A  e. 
{ A }  /\  { A }  C_  ( `' f " x
) ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
161, 4, 11, 15syl12anc 1215 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
1716expr 373 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  x  e.  K )  ->  (
( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) )
1817ralrimiva 2508 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  ( { A }  e.  J  /\  f : X --> Y ) )  ->  A. x  e.  K  ( (
f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) )
1918expr 373 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y  ->  A. x  e.  K  ( ( f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) )
2019pm4.71d 391 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y 
<->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
21 simpl2 986 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  K  e.  (TopOn `  Y ) )
22 toponmax 12231 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2321, 22syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  Y  e.  K )
24 simpl1 985 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  J  e.  (TopOn `  X ) )
25 toponmax 12231 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2624, 25syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  X  e.  J )
2723, 26elmapd 6564 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( Y  ^m  X )  <-> 
f : X --> Y ) )
28 iscnp3 12411 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( f  e.  ( ( J  CnP  K ) `  A )  <-> 
( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
2928adantr 274 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) ) )
3020, 27, 293bitr4rd 220 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  f  e.  ( Y  ^m  X ) ) )
3130eqrdv 2138 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   {csn 3532   `'ccnv 4546   "cima 4550    Fn wfn 5126   -->wf 5127   ` cfv 5131  (class class class)co 5782    ^m cmap 6550  TopOnctopon 12216    CnP ccnp 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-top 12204  df-topon 12217  df-cnp 12397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator