Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnpdis | Unicode version |
Description: If is an isolated point in (or equivalently, the singleton is open in ), then every function is continuous at . (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
cnpdis | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 525 | . . . . . . . 8 TopOn TopOn | |
2 | simpll3 1028 | . . . . . . . . 9 TopOn TopOn | |
3 | snidg 3605 | . . . . . . . . 9 | |
4 | 2, 3 | syl 14 | . . . . . . . 8 TopOn TopOn |
5 | simprr 522 | . . . . . . . . . 10 TopOn TopOn | |
6 | simplrr 526 | . . . . . . . . . . 11 TopOn TopOn | |
7 | ffn 5337 | . . . . . . . . . . 11 | |
8 | elpreima 5604 | . . . . . . . . . . 11 | |
9 | 6, 7, 8 | 3syl 17 | . . . . . . . . . 10 TopOn TopOn |
10 | 2, 5, 9 | mpbir2and 934 | . . . . . . . . 9 TopOn TopOn |
11 | 10 | snssd 3718 | . . . . . . . 8 TopOn TopOn |
12 | eleq2 2230 | . . . . . . . . . 10 | |
13 | sseq1 3165 | . . . . . . . . . 10 | |
14 | 12, 13 | anbi12d 465 | . . . . . . . . 9 |
15 | 14 | rspcev 2830 | . . . . . . . 8 |
16 | 1, 4, 11, 15 | syl12anc 1226 | . . . . . . 7 TopOn TopOn |
17 | 16 | expr 373 | . . . . . 6 TopOn TopOn |
18 | 17 | ralrimiva 2539 | . . . . 5 TopOn TopOn |
19 | 18 | expr 373 | . . . 4 TopOn TopOn |
20 | 19 | pm4.71d 391 | . . 3 TopOn TopOn |
21 | simpl2 991 | . . . . 5 TopOn TopOn TopOn | |
22 | toponmax 12663 | . . . . 5 TopOn | |
23 | 21, 22 | syl 14 | . . . 4 TopOn TopOn |
24 | simpl1 990 | . . . . 5 TopOn TopOn TopOn | |
25 | toponmax 12663 | . . . . 5 TopOn | |
26 | 24, 25 | syl 14 | . . . 4 TopOn TopOn |
27 | 23, 26 | elmapd 6628 | . . 3 TopOn TopOn |
28 | iscnp3 12843 | . . . 4 TopOn TopOn | |
29 | 28 | adantr 274 | . . 3 TopOn TopOn |
30 | 20, 27, 29 | 3bitr4rd 220 | . 2 TopOn TopOn |
31 | 30 | eqrdv 2163 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 csn 3576 ccnv 4603 cima 4607 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cmap 6614 TopOnctopon 12648 ccnp 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12636 df-topon 12649 df-cnp 12829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |