Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnpdis | Unicode version |
Description: If is an isolated point in (or equivalently, the singleton is open in ), then every function is continuous at . (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
cnpdis | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 525 | . . . . . . . 8 TopOn TopOn | |
2 | simpll3 1023 | . . . . . . . . 9 TopOn TopOn | |
3 | snidg 3589 | . . . . . . . . 9 | |
4 | 2, 3 | syl 14 | . . . . . . . 8 TopOn TopOn |
5 | simprr 522 | . . . . . . . . . 10 TopOn TopOn | |
6 | simplrr 526 | . . . . . . . . . . 11 TopOn TopOn | |
7 | ffn 5316 | . . . . . . . . . . 11 | |
8 | elpreima 5583 | . . . . . . . . . . 11 | |
9 | 6, 7, 8 | 3syl 17 | . . . . . . . . . 10 TopOn TopOn |
10 | 2, 5, 9 | mpbir2and 929 | . . . . . . . . 9 TopOn TopOn |
11 | 10 | snssd 3701 | . . . . . . . 8 TopOn TopOn |
12 | eleq2 2221 | . . . . . . . . . 10 | |
13 | sseq1 3151 | . . . . . . . . . 10 | |
14 | 12, 13 | anbi12d 465 | . . . . . . . . 9 |
15 | 14 | rspcev 2816 | . . . . . . . 8 |
16 | 1, 4, 11, 15 | syl12anc 1218 | . . . . . . 7 TopOn TopOn |
17 | 16 | expr 373 | . . . . . 6 TopOn TopOn |
18 | 17 | ralrimiva 2530 | . . . . 5 TopOn TopOn |
19 | 18 | expr 373 | . . . 4 TopOn TopOn |
20 | 19 | pm4.71d 391 | . . 3 TopOn TopOn |
21 | simpl2 986 | . . . . 5 TopOn TopOn TopOn | |
22 | toponmax 12383 | . . . . 5 TopOn | |
23 | 21, 22 | syl 14 | . . . 4 TopOn TopOn |
24 | simpl1 985 | . . . . 5 TopOn TopOn TopOn | |
25 | toponmax 12383 | . . . . 5 TopOn | |
26 | 24, 25 | syl 14 | . . . 4 TopOn TopOn |
27 | 23, 26 | elmapd 6600 | . . 3 TopOn TopOn |
28 | iscnp3 12563 | . . . 4 TopOn TopOn | |
29 | 28 | adantr 274 | . . 3 TopOn TopOn |
30 | 20, 27, 29 | 3bitr4rd 220 | . 2 TopOn TopOn |
31 | 30 | eqrdv 2155 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 csn 3560 ccnv 4582 cima 4586 wfn 5162 wf 5163 cfv 5167 (class class class)co 5818 cmap 6586 TopOnctopon 12368 ccnp 12546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-map 6588 df-top 12356 df-topon 12369 df-cnp 12549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |