ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpdis Unicode version

Theorem cnpdis 14916
Description: If  A is an isolated point in  X (or equivalently, the singleton  { A } is open in  X), then every function is continuous at  A. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )

Proof of Theorem cnpdis
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 535 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  e.  J
)
2 simpll3 1062 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  X )
3 snidg 3695 . . . . . . . . 9  |-  ( A  e.  X  ->  A  e.  { A } )
42, 3syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  { A } )
5 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( f `  A
)  e.  x )
6 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
f : X --> Y )
7 ffn 5473 . . . . . . . . . . 11  |-  ( f : X --> Y  -> 
f  Fn  X )
8 elpreima 5754 . . . . . . . . . . 11  |-  ( f  Fn  X  ->  ( A  e.  ( `' f " x )  <->  ( A  e.  X  /\  (
f `  A )  e.  x ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( A  e.  ( `' f " x
)  <->  ( A  e.  X  /\  ( f `
 A )  e.  x ) ) )
102, 5, 9mpbir2and 950 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  ( `' f " x ) )
1110snssd 3813 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  C_  ( `' f " x
) )
12 eleq2 2293 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( A  e.  y  <-> 
A  e.  { A } ) )
13 sseq1 3247 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( y  C_  ( `' f " x
)  <->  { A }  C_  ( `' f " x
) ) )
1412, 13anbi12d 473 . . . . . . . . 9  |-  ( y  =  { A }  ->  ( ( A  e.  y  /\  y  C_  ( `' f " x
) )  <->  ( A  e.  { A }  /\  { A }  C_  ( `' f " x
) ) ) )
1514rspcev 2907 . . . . . . . 8  |-  ( ( { A }  e.  J  /\  ( A  e. 
{ A }  /\  { A }  C_  ( `' f " x
) ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
161, 4, 11, 15syl12anc 1269 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
1716expr 375 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  x  e.  K )  ->  (
( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) )
1817ralrimiva 2603 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  ( { A }  e.  J  /\  f : X --> Y ) )  ->  A. x  e.  K  ( (
f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) )
1918expr 375 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y  ->  A. x  e.  K  ( ( f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) )
2019pm4.71d 393 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y 
<->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
21 simpl2 1025 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  K  e.  (TopOn `  Y ) )
22 toponmax 14699 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2321, 22syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  Y  e.  K )
24 simpl1 1024 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  J  e.  (TopOn `  X ) )
25 toponmax 14699 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2624, 25syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  X  e.  J )
2723, 26elmapd 6809 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( Y  ^m  X )  <-> 
f : X --> Y ) )
28 iscnp3 14877 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( f  e.  ( ( J  CnP  K ) `  A )  <-> 
( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
2928adantr 276 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) ) )
3020, 27, 293bitr4rd 221 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  f  e.  ( Y  ^m  X ) ) )
3130eqrdv 2227 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   {csn 3666   `'ccnv 4718   "cima 4722    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001    ^m cmap 6795  TopOnctopon 14684    CnP ccnp 14860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cnp 14863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator