ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpdis Unicode version

Theorem cnpdis 14410
Description: If  A is an isolated point in  X (or equivalently, the singleton  { A } is open in  X), then every function is continuous at  A. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )

Proof of Theorem cnpdis
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 535 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  e.  J
)
2 simpll3 1040 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  X )
3 snidg 3647 . . . . . . . . 9  |-  ( A  e.  X  ->  A  e.  { A } )
42, 3syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  { A } )
5 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( f `  A
)  e.  x )
6 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
f : X --> Y )
7 ffn 5403 . . . . . . . . . . 11  |-  ( f : X --> Y  -> 
f  Fn  X )
8 elpreima 5677 . . . . . . . . . . 11  |-  ( f  Fn  X  ->  ( A  e.  ( `' f " x )  <->  ( A  e.  X  /\  (
f `  A )  e.  x ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( A  e.  ( `' f " x
)  <->  ( A  e.  X  /\  ( f `
 A )  e.  x ) ) )
102, 5, 9mpbir2and 946 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  ( `' f " x ) )
1110snssd 3763 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  C_  ( `' f " x
) )
12 eleq2 2257 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( A  e.  y  <-> 
A  e.  { A } ) )
13 sseq1 3202 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( y  C_  ( `' f " x
)  <->  { A }  C_  ( `' f " x
) ) )
1412, 13anbi12d 473 . . . . . . . . 9  |-  ( y  =  { A }  ->  ( ( A  e.  y  /\  y  C_  ( `' f " x
) )  <->  ( A  e.  { A }  /\  { A }  C_  ( `' f " x
) ) ) )
1514rspcev 2864 . . . . . . . 8  |-  ( ( { A }  e.  J  /\  ( A  e. 
{ A }  /\  { A }  C_  ( `' f " x
) ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
161, 4, 11, 15syl12anc 1247 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
1716expr 375 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  x  e.  K )  ->  (
( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) )
1817ralrimiva 2567 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  ( { A }  e.  J  /\  f : X --> Y ) )  ->  A. x  e.  K  ( (
f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) )
1918expr 375 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y  ->  A. x  e.  K  ( ( f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) )
2019pm4.71d 393 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y 
<->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
21 simpl2 1003 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  K  e.  (TopOn `  Y ) )
22 toponmax 14193 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2321, 22syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  Y  e.  K )
24 simpl1 1002 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  J  e.  (TopOn `  X ) )
25 toponmax 14193 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2624, 25syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  X  e.  J )
2723, 26elmapd 6716 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( Y  ^m  X )  <-> 
f : X --> Y ) )
28 iscnp3 14371 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( f  e.  ( ( J  CnP  K ) `  A )  <-> 
( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
2928adantr 276 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) ) )
3020, 27, 293bitr4rd 221 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  f  e.  ( Y  ^m  X ) ) )
3130eqrdv 2191 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   {csn 3618   `'ccnv 4658   "cima 4662    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918    ^m cmap 6702  TopOnctopon 14178    CnP ccnp 14354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-top 14166  df-topon 14179  df-cnp 14357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator