ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2id Unicode version

Theorem bitr2id 193
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2id.1  |-  ( ph  <->  ps )
bitr2id.2  |-  ( ch 
->  ( ps  <->  th )
)
Assertion
Ref Expression
bitr2id  |-  ( ch 
->  ( th  <->  ph ) )

Proof of Theorem bitr2id
StepHypRef Expression
1 bitr2id.1 . . 3  |-  ( ph  <->  ps )
2 bitr2id.2 . . 3  |-  ( ch 
->  ( ps  <->  th )
)
31, 2bitrid 192 . 2  |-  ( ch 
->  ( ph  <->  th )
)
43bicomd 141 1  |-  ( ch 
->  ( th  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr3di  195  pm5.17dc  909  dn1dc  966  csbabg  3186  uniiunlem  3313  inimasn  5145  cnvpom  5270  fnresdisj  5432  f1oiso  5949  reldm  6330  mptelixpg  6879  1idprl  7773  1idpru  7774  nndiv  9147  fzn  10234  fz1sbc  10288  grpid  13567  znleval  14611  metrest  15174
  Copyright terms: Public domain W3C validator