ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2id Unicode version

Theorem bitr2id 193
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2id.1  |-  ( ph  <->  ps )
bitr2id.2  |-  ( ch 
->  ( ps  <->  th )
)
Assertion
Ref Expression
bitr2id  |-  ( ch 
->  ( th  <->  ph ) )

Proof of Theorem bitr2id
StepHypRef Expression
1 bitr2id.1 . . 3  |-  ( ph  <->  ps )
2 bitr2id.2 . . 3  |-  ( ch 
->  ( ps  <->  th )
)
31, 2bitrid 192 . 2  |-  ( ch 
->  ( ph  <->  th )
)
43bicomd 141 1  |-  ( ch 
->  ( th  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr3di  195  pm5.17dc  905  dn1dc  962  csbabg  3142  uniiunlem  3268  inimasn  5083  cnvpom  5208  fnresdisj  5364  f1oiso  5869  reldm  6239  mptelixpg  6788  1idprl  7650  1idpru  7651  nndiv  9023  fzn  10108  fz1sbc  10162  grpid  13111  znleval  14141  metrest  14674
  Copyright terms: Public domain W3C validator