| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 |
|
| bitr2id.2 |
|
| Ref | Expression |
|---|---|
| bitr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 |
. . 3
| |
| 2 | bitr2id.2 |
. . 3
| |
| 3 | 1, 2 | bitrid 192 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr3di 195 pm5.17dc 905 dn1dc 962 csbabg 3146 uniiunlem 3272 inimasn 5087 cnvpom 5212 fnresdisj 5368 f1oiso 5873 reldm 6244 mptelixpg 6793 1idprl 7657 1idpru 7658 nndiv 9031 fzn 10117 fz1sbc 10171 grpid 13171 znleval 14209 metrest 14742 |
| Copyright terms: Public domain | W3C validator |