![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2id | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr2id.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2id.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrid 192 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 141 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bitr3di 195 pm5.17dc 905 dn1dc 962 csbabg 3133 uniiunlem 3259 inimasn 5064 cnvpom 5189 fnresdisj 5345 f1oiso 5848 reldm 6211 mptelixpg 6760 1idprl 7619 1idpru 7620 nndiv 8990 fzn 10072 fz1sbc 10126 grpid 12983 metrest 14463 |
Copyright terms: Public domain | W3C validator |