ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2id Unicode version

Theorem bitr2id 193
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2id.1  |-  ( ph  <->  ps )
bitr2id.2  |-  ( ch 
->  ( ps  <->  th )
)
Assertion
Ref Expression
bitr2id  |-  ( ch 
->  ( th  <->  ph ) )

Proof of Theorem bitr2id
StepHypRef Expression
1 bitr2id.1 . . 3  |-  ( ph  <->  ps )
2 bitr2id.2 . . 3  |-  ( ch 
->  ( ps  <->  th )
)
31, 2bitrid 192 . 2  |-  ( ch 
->  ( ph  <->  th )
)
43bicomd 141 1  |-  ( ch 
->  ( th  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr3di  195  pm5.17dc  905  dn1dc  962  csbabg  3146  uniiunlem  3272  inimasn  5087  cnvpom  5212  fnresdisj  5368  f1oiso  5873  reldm  6244  mptelixpg  6793  1idprl  7657  1idpru  7658  nndiv  9031  fzn  10117  fz1sbc  10171  grpid  13171  znleval  14209  metrest  14742
  Copyright terms: Public domain W3C validator