| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2id | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 |
|
| bitr2id.2 |
|
| Ref | Expression |
|---|---|
| bitr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 |
. . 3
| |
| 2 | bitr2id.2 |
. . 3
| |
| 3 | 1, 2 | bitrid 192 |
. 2
|
| 4 | 3 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr3di 195 pm5.17dc 909 dn1dc 966 csbabg 3186 uniiunlem 3313 inimasn 5145 cnvpom 5270 fnresdisj 5432 f1oiso 5949 reldm 6330 mptelixpg 6879 1idprl 7773 1idpru 7774 nndiv 9147 fzn 10234 fz1sbc 10288 grpid 13567 znleval 14611 metrest 15174 |
| Copyright terms: Public domain | W3C validator |