![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2id | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr2id.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2id.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrid 192 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 141 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bitr3di 195 pm5.17dc 904 dn1dc 960 csbabg 3120 uniiunlem 3246 inimasn 5048 cnvpom 5173 fnresdisj 5328 f1oiso 5830 reldm 6190 mptelixpg 6737 1idprl 7592 1idpru 7593 nndiv 8963 fzn 10045 fz1sbc 10099 grpid 12918 metrest 14146 |
Copyright terms: Public domain | W3C validator |