ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2id Unicode version

Theorem bitr2id 193
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2id.1  |-  ( ph  <->  ps )
bitr2id.2  |-  ( ch 
->  ( ps  <->  th )
)
Assertion
Ref Expression
bitr2id  |-  ( ch 
->  ( th  <->  ph ) )

Proof of Theorem bitr2id
StepHypRef Expression
1 bitr2id.1 . . 3  |-  ( ph  <->  ps )
2 bitr2id.2 . . 3  |-  ( ch 
->  ( ps  <->  th )
)
31, 2bitrid 192 . 2  |-  ( ch 
->  ( ph  <->  th )
)
43bicomd 141 1  |-  ( ch 
->  ( th  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr3di  195  pm5.17dc  904  dn1dc  960  csbabg  3120  uniiunlem  3246  inimasn  5048  cnvpom  5173  fnresdisj  5328  f1oiso  5830  reldm  6190  mptelixpg  6737  1idprl  7592  1idpru  7593  nndiv  8963  fzn  10045  fz1sbc  10099  grpid  12918  metrest  14146
  Copyright terms: Public domain W3C validator