ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.3rm Unicode version

Theorem r19.3rm 3539
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.)
Hypothesis
Ref Expression
r19.3rm.1  |-  F/ x ph
Assertion
Ref Expression
r19.3rm  |-  ( E. y  y  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem r19.3rm
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . 3  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
21cbvexv 1933 . 2  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
3 eleq1 2259 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
43cbvexv 1933 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
5 biimt 241 . . . 4  |-  ( E. x  x  e.  A  ->  ( ph  <->  ( E. x  x  e.  A  ->  ph ) ) )
6 df-ral 2480 . . . . 5  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
7 r19.3rm.1 . . . . . 6  |-  F/ x ph
8719.23 1692 . . . . 5  |-  ( A. x ( x  e.  A  ->  ph )  <->  ( E. x  x  e.  A  ->  ph ) )
96, 8bitri 184 . . . 4  |-  ( A. x  e.  A  ph  <->  ( E. x  x  e.  A  ->  ph ) )
105, 9bitr4di 198 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
114, 10sylbi 121 . 2  |-  ( E. a  a  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
122, 11sylbir 135 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   F/wnf 1474   E.wex 1506    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-cleq 2189  df-clel 2192  df-ral 2480
This theorem is referenced by:  r19.28m  3540  r19.3rmv  3541  r19.27m  3546  indstr  9667
  Copyright terms: Public domain W3C validator