| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.3rm | Unicode version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.) |
| Ref | Expression |
|---|---|
| r19.3rm.1 |
|
| Ref | Expression |
|---|---|
| r19.3rm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. . 3
| |
| 2 | 1 | cbvexv 1933 |
. 2
|
| 3 | eleq1 2259 |
. . . 4
| |
| 4 | 3 | cbvexv 1933 |
. . 3
|
| 5 | biimt 241 |
. . . 4
| |
| 6 | df-ral 2480 |
. . . . 5
| |
| 7 | r19.3rm.1 |
. . . . . 6
| |
| 8 | 7 | 19.23 1692 |
. . . . 5
|
| 9 | 6, 8 | bitri 184 |
. . . 4
|
| 10 | 5, 9 | bitr4di 198 |
. . 3
|
| 11 | 4, 10 | sylbi 121 |
. 2
|
| 12 | 2, 11 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 |
| This theorem is referenced by: r19.28m 3541 r19.3rmv 3542 r19.27m 3547 indstr 9684 |
| Copyright terms: Public domain | W3C validator |