ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.35-1 Unicode version

Theorem r19.35-1 2656
Description: Restricted quantifier version of 19.35-1 1647. (Contributed by Jim Kingdon, 4-Jun-2018.)
Assertion
Ref Expression
r19.35-1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  E. x  e.  A  ps )
)

Proof of Theorem r19.35-1
StepHypRef Expression
1 r19.29 2643 . . 3  |-  ( ( A. x  e.  A  ph 
/\  E. x  e.  A  ( ph  ->  ps )
)  ->  E. x  e.  A  ( ph  /\  ( ph  ->  ps ) ) )
2 pm3.35 347 . . . 4  |-  ( (
ph  /\  ( ph  ->  ps ) )  ->  ps )
32reximi 2603 . . 3  |-  ( E. x  e.  A  (
ph  /\  ( ph  ->  ps ) )  ->  E. x  e.  A  ps )
41, 3syl 14 . 2  |-  ( ( A. x  e.  A  ph 
/\  E. x  e.  A  ( ph  ->  ps )
)  ->  E. x  e.  A  ps )
54expcom 116 1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  E. x  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wral 2484   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-ral 2489  df-rex 2490
This theorem is referenced by:  r19.36av  2657  r19.37  2658  iinexgm  4199  bndndx  9296
  Copyright terms: Public domain W3C validator