ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.35-1 Unicode version

Theorem r19.35-1 2620
Description: Restricted quantifier version of 19.35-1 1617. (Contributed by Jim Kingdon, 4-Jun-2018.)
Assertion
Ref Expression
r19.35-1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  E. x  e.  A  ps )
)

Proof of Theorem r19.35-1
StepHypRef Expression
1 r19.29 2607 . . 3  |-  ( ( A. x  e.  A  ph 
/\  E. x  e.  A  ( ph  ->  ps )
)  ->  E. x  e.  A  ( ph  /\  ( ph  ->  ps ) ) )
2 pm3.35 345 . . . 4  |-  ( (
ph  /\  ( ph  ->  ps ) )  ->  ps )
32reximi 2567 . . 3  |-  ( E. x  e.  A  (
ph  /\  ( ph  ->  ps ) )  ->  E. x  e.  A  ps )
41, 3syl 14 . 2  |-  ( ( A. x  e.  A  ph 
/\  E. x  e.  A  ( ph  ->  ps )
)  ->  E. x  e.  A  ps )
54expcom 115 1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  E. x  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wral 2448   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-ral 2453  df-rex 2454
This theorem is referenced by:  r19.36av  2621  r19.37  2622  iinexgm  4140  bndndx  9134
  Copyright terms: Public domain W3C validator