ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.36av Unicode version

Theorem r19.36av 2682
Description: One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. In classical logic, the converse would hold if  A has at least one element, but in intuitionistic logic, that is not a sufficient condition. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
r19.36av  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.36av
StepHypRef Expression
1 r19.35-1 2681 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  E. x  e.  A  ps )
)
2 idd 21 . . . 4  |-  ( x  e.  A  ->  ( ps  ->  ps ) )
32rexlimiv 2642 . . 3  |-  ( E. x  e.  A  ps  ->  ps )
43imim2i 12 . 2  |-  ( ( A. x  e.  A  ph 
->  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  ->  ps ) )
51, 4syl 14 1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   A.wral 2508   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  iinss  4016
  Copyright terms: Public domain W3C validator