ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss Unicode version

Theorem iinss 3968
Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iinss  |-  ( E. x  e.  A  B  C_  C  ->  |^|_ x  e.  A  B  C_  C
)
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem iinss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . 4  |-  y  e. 
_V
2 eliin 3921 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  y  e.  B ) )
31, 2ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  y  e.  B )
4 ssel 3177 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
54reximi 2594 . . . 4  |-  ( E. x  e.  A  B  C_  C  ->  E. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
6 r19.36av 2648 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  -> 
y  e.  C )  ->  ( A. x  e.  A  y  e.  B  ->  y  e.  C
) )
75, 6syl 14 . . 3  |-  ( E. x  e.  A  B  C_  C  ->  ( A. x  e.  A  y  e.  B  ->  y  e.  C ) )
83, 7biimtrid 152 . 2  |-  ( E. x  e.  A  B  C_  C  ->  ( y  e.  |^|_ x  e.  A  B  ->  y  e.  C
) )
98ssrdv 3189 1  |-  ( E. x  e.  A  B  C_  C  ->  |^|_ x  e.  A  B  C_  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763    C_ wss 3157   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-iin 3919
This theorem is referenced by:  riinm  3989  reliin  4785  cnviinm  5211  iinerm  6666
  Copyright terms: Public domain W3C validator