ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.41v Unicode version

Theorem r19.41v 2687
Description: Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
r19.41v  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  ( E. x  e.  A  ph 
/\  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.41v
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ x ps
21r19.41 2686 1  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  ( E. x  e.  A  ph 
/\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-rex 2514
This theorem is referenced by:  r19.42v  2688  3reeanv  2702  reuind  3008  iuncom4  3972  dfiun2g  3997  iunxiun  4047  inuni  4239  xpiundi  4777  xpiundir  4778  imaco  5234  coiun  5238  abrexco  5883  imaiun  5884  isoini  5942  rexrnmpo  6120  mapsnen  6964  genpassl  7711  genpassu  7712  4fvwrd4  10336  4sqlem12  12925  metrest  15180  trirec0xor  16413
  Copyright terms: Public domain W3C validator