| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdaa | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) |
| Ref | Expression |
|---|---|
| ralimdaa.1 |
|
| ralimdaa.2 |
|
| Ref | Expression |
|---|---|
| ralimdaa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdaa.1 |
. . 3
| |
| 2 | ralimdaa.2 |
. . . . 5
| |
| 3 | 2 | ex 115 |
. . . 4
|
| 4 | 3 | a2d 26 |
. . 3
|
| 5 | 1, 4 | alimd 1535 |
. 2
|
| 6 | df-ral 2480 |
. 2
| |
| 7 | df-ral 2480 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralimdva 2564 mkvprop 7224 isomninnlem 15674 ismkvnnlem 15696 |
| Copyright terms: Public domain | W3C validator |