Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdaa | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
ralimdaa.1 | |
ralimdaa.2 |
Ref | Expression |
---|---|
ralimdaa |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | . . 3 | |
2 | ralimdaa.2 | . . . . 5 | |
3 | 2 | ex 114 | . . . 4 |
4 | 3 | a2d 26 | . . 3 |
5 | 1, 4 | alimd 1509 | . 2 |
6 | df-ral 2449 | . 2 | |
7 | df-ral 2449 | . 2 | |
8 | 5, 6, 7 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wnf 1448 wcel 2136 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: ralimdva 2533 mkvprop 7122 isomninnlem 13909 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |