| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) | 
| Ref | Expression | 
|---|---|
| ralimdva.1 | 
 | 
| Ref | Expression | 
|---|---|
| ralimdva | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. 2
 | |
| 2 | ralimdva.1 | 
. 2
 | |
| 3 | 1, 2 | ralimdaa 2563 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 | 
| This theorem is referenced by: ralimdv 2565 ralimdvva 2566 f1mpt 5818 isores3 5862 caofrss 6162 caoftrn 6163 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 tfrcl 6422 infidc 7000 exmidomniim 7207 exmidontri2or 7310 caucvgsrlemoffcau 7865 caucvgsrlemoffres 7867 indstr 9667 caucvgre 11146 rexuz3 11155 resqrexlemgt0 11185 resqrexlemglsq 11187 cau3lem 11279 rexanre 11385 rexico 11386 2clim 11466 climcn1 11473 climcn2 11474 subcn2 11476 climsqz 11500 climsqz2 11501 climcvg1nlem 11514 fprodsplitdc 11761 bezoutlemaz 12170 bezoutlembz 12171 bezoutlembi 12172 pcfac 12519 pockthg 12526 infpnlem1 12528 isgrpinv 13186 dfgrp3me 13232 issubg4m 13323 cncnp 14466 txlm 14515 metequiv2 14732 metcnpi3 14753 rescncf 14817 cncfco 14827 suplociccreex 14860 limcresi 14902 cnplimcim 14903 cnplimclemr 14905 cnlimcim 14907 limccnpcntop 14911 limccoap 14914 2sqlem6 15361 bj-charfunbi 15457 nninffeq 15664 tridceq 15700 | 
| Copyright terms: Public domain | W3C validator |