| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 |
|
| Ref | Expression |
|---|---|
| ralimdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ralimdva.1 |
. 2
| |
| 3 | 1, 2 | ralimdaa 2563 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralimdv 2565 ralimdvva 2566 f1mpt 5821 isores3 5865 caofrss 6171 caoftrn 6172 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 tfrcl 6431 infidc 7009 exmidomniim 7216 exmidontri2or 7326 caucvgsrlemoffcau 7882 caucvgsrlemoffres 7884 indstr 9684 caucvgre 11163 rexuz3 11172 resqrexlemgt0 11202 resqrexlemglsq 11204 cau3lem 11296 rexanre 11402 rexico 11403 2clim 11483 climcn1 11490 climcn2 11491 subcn2 11493 climsqz 11517 climsqz2 11518 climcvg1nlem 11531 fprodsplitdc 11778 bezoutlemaz 12195 bezoutlembz 12196 bezoutlembi 12197 pcfac 12544 pockthg 12551 infpnlem1 12553 isgrpinv 13256 dfgrp3me 13302 issubg4m 13399 cncnp 14550 txlm 14599 metequiv2 14816 metcnpi3 14837 rescncf 14901 cncfco 14911 suplociccreex 14944 limcresi 14986 cnplimcim 14987 cnplimclemr 14989 cnlimcim 14991 limccnpcntop 14995 limccoap 14998 2sqlem6 15445 bj-charfunbi 15541 nninffeq 15751 tridceq 15787 |
| Copyright terms: Public domain | W3C validator |