| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 |
|
| Ref | Expression |
|---|---|
| ralimdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | ralimdva.1 |
. 2
| |
| 3 | 1, 2 | ralimdaa 2572 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralimdv 2574 ralimdvva 2575 f1mpt 5842 isores3 5886 caofrss 6192 caoftrn 6193 tfrlemibxssdm 6415 tfr1onlembxssdm 6431 tfrcllembxssdm 6444 tfrcl 6452 infidc 7038 exmidomniim 7245 exmidontri2or 7357 caucvgsrlemoffcau 7913 caucvgsrlemoffres 7915 indstr 9716 caucvgre 11325 rexuz3 11334 resqrexlemgt0 11364 resqrexlemglsq 11366 cau3lem 11458 rexanre 11564 rexico 11565 2clim 11645 climcn1 11652 climcn2 11653 subcn2 11655 climsqz 11679 climsqz2 11680 climcvg1nlem 11693 fprodsplitdc 11940 bezoutlemaz 12357 bezoutlembz 12358 bezoutlembi 12359 pcfac 12706 pockthg 12713 infpnlem1 12715 isgrpinv 13419 dfgrp3me 13465 issubg4m 13562 mplsubgfileminv 14495 cncnp 14735 txlm 14784 metequiv2 15001 metcnpi3 15022 rescncf 15086 cncfco 15096 suplociccreex 15129 limcresi 15171 cnplimcim 15172 cnplimclemr 15174 cnlimcim 15176 limccnpcntop 15180 limccoap 15183 2sqlem6 15630 bj-charfunbi 15784 nninffeq 15994 tridceq 16032 |
| Copyright terms: Public domain | W3C validator |