| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 |
|
| Ref | Expression |
|---|---|
| ralimdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ralimdva.1 |
. 2
| |
| 3 | 1, 2 | ralimdaa 2563 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralimdv 2565 ralimdvva 2566 f1mpt 5819 isores3 5863 caofrss 6163 caoftrn 6164 tfrlemibxssdm 6386 tfr1onlembxssdm 6402 tfrcllembxssdm 6415 tfrcl 6423 infidc 7001 exmidomniim 7208 exmidontri2or 7312 caucvgsrlemoffcau 7867 caucvgsrlemoffres 7869 indstr 9669 caucvgre 11148 rexuz3 11157 resqrexlemgt0 11187 resqrexlemglsq 11189 cau3lem 11281 rexanre 11387 rexico 11388 2clim 11468 climcn1 11475 climcn2 11476 subcn2 11478 climsqz 11502 climsqz2 11503 climcvg1nlem 11516 fprodsplitdc 11763 bezoutlemaz 12180 bezoutlembz 12181 bezoutlembi 12182 pcfac 12529 pockthg 12536 infpnlem1 12538 isgrpinv 13196 dfgrp3me 13242 issubg4m 13333 cncnp 14476 txlm 14525 metequiv2 14742 metcnpi3 14763 rescncf 14827 cncfco 14837 suplociccreex 14870 limcresi 14912 cnplimcim 14913 cnplimclemr 14915 cnlimcim 14917 limccnpcntop 14921 limccoap 14924 2sqlem6 15371 bj-charfunbi 15467 nninffeq 15674 tridceq 15710 |
| Copyright terms: Public domain | W3C validator |