![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralimdva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
2 | ralimdva.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ralimdaa 2560 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: ralimdv 2562 ralimdvva 2563 f1mpt 5815 isores3 5859 caofrss 6159 caoftrn 6160 tfrlemibxssdm 6382 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 tfrcl 6419 infidc 6995 exmidomniim 7202 exmidontri2or 7305 caucvgsrlemoffcau 7860 caucvgsrlemoffres 7862 indstr 9661 caucvgre 11128 rexuz3 11137 resqrexlemgt0 11167 resqrexlemglsq 11169 cau3lem 11261 rexanre 11367 rexico 11368 2clim 11447 climcn1 11454 climcn2 11455 subcn2 11457 climsqz 11481 climsqz2 11482 climcvg1nlem 11495 fprodsplitdc 11742 bezoutlemaz 12143 bezoutlembz 12144 bezoutlembi 12145 pcfac 12491 pockthg 12498 infpnlem1 12500 isgrpinv 13129 dfgrp3me 13175 issubg4m 13266 cncnp 14409 txlm 14458 metequiv2 14675 metcnpi3 14696 rescncf 14760 cncfco 14770 suplociccreex 14803 limcresi 14845 cnplimcim 14846 cnplimclemr 14848 cnlimcim 14850 limccnpcntop 14854 limccoap 14857 2sqlem6 15277 bj-charfunbi 15373 nninffeq 15580 tridceq 15616 |
Copyright terms: Public domain | W3C validator |