| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 |
|
| Ref | Expression |
|---|---|
| ralimdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | ralimdva.1 |
. 2
| |
| 3 | 1, 2 | ralimdaa 2596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: ralimdv 2598 ralimdvva 2599 f1mpt 5895 isores3 5939 caofrss 6250 caoftrn 6251 tfrlemibxssdm 6473 tfr1onlembxssdm 6489 tfrcllembxssdm 6502 tfrcl 6510 infidc 7101 exmidomniim 7308 exmidontri2or 7428 caucvgsrlemoffcau 7985 caucvgsrlemoffres 7987 indstr 9788 caucvgre 11492 rexuz3 11501 resqrexlemgt0 11531 resqrexlemglsq 11533 cau3lem 11625 rexanre 11731 rexico 11732 2clim 11812 climcn1 11819 climcn2 11820 subcn2 11822 climsqz 11846 climsqz2 11847 climcvg1nlem 11860 fprodsplitdc 12107 bezoutlemaz 12524 bezoutlembz 12525 bezoutlembi 12526 pcfac 12873 pockthg 12880 infpnlem1 12882 isgrpinv 13587 dfgrp3me 13633 issubg4m 13730 mplsubgfileminv 14664 cncnp 14904 txlm 14953 metequiv2 15170 metcnpi3 15191 rescncf 15255 cncfco 15265 suplociccreex 15298 limcresi 15340 cnplimcim 15341 cnplimclemr 15343 cnlimcim 15345 limccnpcntop 15349 limccoap 15352 2sqlem6 15799 wlkvtxiedg 16056 wlkvtxiedgg 16057 upgrwlkvtxedg 16075 uspgr2wlkeq 16076 bj-charfunbi 16174 nninffeq 16386 tridceq 16424 |
| Copyright terms: Public domain | W3C validator |