Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdva | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 |
Ref | Expression |
---|---|
ralimdva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 | |
2 | ralimdva.1 | . 2 | |
3 | 1, 2 | ralimdaa 2523 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-ral 2440 |
This theorem is referenced by: ralimdv 2525 ralimdvva 2526 f1mpt 5721 isores3 5765 caofrss 6056 caoftrn 6057 tfrlemibxssdm 6274 tfr1onlembxssdm 6290 tfrcllembxssdm 6303 tfrcl 6311 exmidomniim 7084 exmidontri2or 7178 caucvgsrlemoffcau 7718 caucvgsrlemoffres 7720 indstr 9504 caucvgre 10881 rexuz3 10890 resqrexlemgt0 10920 resqrexlemglsq 10922 cau3lem 11014 rexanre 11120 rexico 11121 2clim 11198 climcn1 11205 climcn2 11206 subcn2 11208 climsqz 11232 climsqz2 11233 climcvg1nlem 11246 fprodsplitdc 11493 bezoutlemaz 11886 bezoutlembz 11887 bezoutlembi 11888 cncnp 12630 txlm 12679 metequiv2 12896 metcnpi3 12917 rescncf 12968 cncfco 12978 suplociccreex 13002 limcresi 13035 cnplimcim 13036 cnplimclemr 13038 cnlimcim 13040 limccnpcntop 13044 limccoap 13047 bj-charfunbi 13386 nninffeq 13592 tridceq 13627 |
Copyright terms: Public domain | W3C validator |