Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  isomninnlem Unicode version

Theorem isomninnlem 16110
Description: Lemma for isomninn 16111. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
Hypothesis
Ref Expression
isomninnlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
isomninnlem  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
Distinct variable groups:    A, f, x   
f, G, x    f, V, x

Proof of Theorem isomninnlem
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 isomnimap 7254 . 2  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) ) )
2 fveq1 5588 . . . . . . . . 9  |-  ( g  =  ( `' G  o.  f )  ->  (
g `  x )  =  ( ( `' G  o.  f ) `
 x ) )
32eqeq1d 2215 . . . . . . . 8  |-  ( g  =  ( `' G  o.  f )  ->  (
( g `  x
)  =  (/)  <->  ( ( `' G  o.  f
) `  x )  =  (/) ) )
43rexbidv 2508 . . . . . . 7  |-  ( g  =  ( `' G  o.  f )  ->  ( E. x  e.  A  ( g `  x
)  =  (/)  <->  E. x  e.  A  ( ( `' G  o.  f
) `  x )  =  (/) ) )
52eqeq1d 2215 . . . . . . . 8  |-  ( g  =  ( `' G  o.  f )  ->  (
( g `  x
)  =  1o  <->  ( ( `' G  o.  f
) `  x )  =  1o ) )
65ralbidv 2507 . . . . . . 7  |-  ( g  =  ( `' G  o.  f )  ->  ( A. x  e.  A  ( g `  x
)  =  1o  <->  A. x  e.  A  ( ( `' G  o.  f
) `  x )  =  1o ) )
74, 6orbi12d 795 . . . . . 6  |-  ( g  =  ( `' G  o.  f )  ->  (
( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o )  <-> 
( E. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  (/)  \/  A. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  1o ) ) )
8 simplr 528 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )
9 isomninnlem.g . . . . . . . . 9  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
109012of 16069 . . . . . . . 8  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
11 elmapi 6770 . . . . . . . . 9  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  f : A --> { 0 ,  1 } )
1211adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  f : A --> { 0 ,  1 } )
13 fco2 5452 . . . . . . . 8  |-  ( ( ( `' G  |`  { 0 ,  1 } ) : {
0 ,  1 } --> 2o  /\  f : A --> { 0 ,  1 } )  -> 
( `' G  o.  f ) : A --> 2o )
1410, 12, 13sylancr 414 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( `' G  o.  f
) : A --> 2o )
15 2onn 6620 . . . . . . . . 9  |-  2o  e.  om
1615a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  2o  e.  om )
17 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  A  e.  V )
1816, 17elmapd 6762 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (
( `' G  o.  f )  e.  ( 2o  ^m  A )  <-> 
( `' G  o.  f ) : A --> 2o ) )
1914, 18mpbird 167 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( `' G  o.  f
)  e.  ( 2o 
^m  A ) )
207, 8, 19rspcdva 2886 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( E. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  (/)  \/  A. x  e.  A  (
( `' G  o.  f ) `  x
)  =  1o ) )
21 nfv 1552 . . . . . . . . 9  |-  F/ x  A  e.  V
22 nfcv 2349 . . . . . . . . . 10  |-  F/_ x
( 2o  ^m  A
)
23 nfre1 2550 . . . . . . . . . . 11  |-  F/ x E. x  e.  A  ( g `  x
)  =  (/)
24 nfra1 2538 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( g `  x
)  =  1o
2523, 24nfor 1598 . . . . . . . . . 10  |-  F/ x
( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o )
2622, 25nfralxy 2545 . . . . . . . . 9  |-  F/ x A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o )
2721, 26nfan 1589 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )
28 nfv 1552 . . . . . . . 8  |-  F/ x  f  e.  ( {
0 ,  1 }  ^m  A )
2927, 28nfan 1589 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )
309frechashgf1o 10595 . . . . . . . . . . 11  |-  G : om
-1-1-onto-> NN0
31 0nn0 9330 . . . . . . . . . . . . 13  |-  0  e.  NN0
32 1nn0 9331 . . . . . . . . . . . . 13  |-  1  e.  NN0
33 prssi 3797 . . . . . . . . . . . . 13  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
3431, 32, 33mp2an 426 . . . . . . . . . . . 12  |-  { 0 ,  1 }  C_  NN0
3511ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  f : A --> { 0 ,  1 } )
36 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  x  e.  A )
3735, 36ffvelcdmd 5729 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
f `  x )  e.  { 0 ,  1 } )
3834, 37sselid 3195 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
f `  x )  e.  NN0 )
39 f1ocnvfv2 5860 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN0  /\  ( f `
 x )  e. 
NN0 )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
4030, 38, 39sylancr 414 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
4140adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( G `  ( `' G `  ( f `
 x ) ) )  =  ( f `
 x ) )
42 fvco3 5663 . . . . . . . . . . . . . 14  |-  ( ( f : A --> { 0 ,  1 }  /\  x  e.  A )  ->  ( ( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
4335, 42sylancom 420 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
4443eqeq1d 2215 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  (/)  <->  ( `' G `  ( f `  x ) )  =  (/) ) )
4544biimpa 296 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( `' G `  ( f `  x
) )  =  (/) )
4645fveq2d 5593 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 (/) ) )
47 0zd 9404 . . . . . . . . . . . 12  |-  ( T. 
->  0  e.  ZZ )
4847, 9frec2uz0d 10566 . . . . . . . . . . 11  |-  ( T. 
->  ( G `  (/) )  =  0 )
4948mptru 1382 . . . . . . . . . 10  |-  ( G `
 (/) )  =  0
5046, 49eqtrdi 2255 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( G `  ( `' G `  ( f `
 x ) ) )  =  0 )
5141, 50eqtr3d 2241 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( f `  x
)  =  0 )
5251exp31 364 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (
x  e.  A  -> 
( ( ( `' G  o.  f ) `
 x )  =  (/)  ->  ( f `  x )  =  0 ) ) )
5329, 52reximdai 2605 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( E. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  (/)  ->  E. x  e.  A  ( f `  x )  =  0 ) )
5440adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( G `  ( `' G `  ( f `
 x ) ) )  =  ( f `
 x ) )
5543adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( ( `' G  o.  f ) `
 x )  =  ( `' G `  ( f `  x
) ) )
56 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( ( `' G  o.  f ) `
 x )  =  1o )
5755, 56eqtr3d 2241 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( `' G `  ( f `  x
) )  =  1o )
5857fveq2d 5593 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o ) )
59 df-1o 6515 . . . . . . . . . . . 12  |-  1o  =  suc  (/)
6059fveq2i 5592 . . . . . . . . . . 11  |-  ( G `
 1o )  =  ( G `  suc  (/) )
61 peano1 4650 . . . . . . . . . . . . . 14  |-  (/)  e.  om
6261a1i 9 . . . . . . . . . . . . 13  |-  ( T. 
->  (/)  e.  om )
6347, 9, 62frec2uzsucd 10568 . . . . . . . . . . . 12  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
6463mptru 1382 . . . . . . . . . . 11  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
6549oveq1i 5967 . . . . . . . . . . . 12  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
66 0p1e1 9170 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
6765, 66eqtri 2227 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  1
6860, 64, 673eqtri 2231 . . . . . . . . . 10  |-  ( G `
 1o )  =  1
6958, 68eqtrdi 2255 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( G `  ( `' G `  ( f `
 x ) ) )  =  1 )
7054, 69eqtr3d 2241 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( f `  x )  =  1 )
7170ex 115 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  1o  ->  ( f `  x )  =  1 ) )
7229, 71ralimdaa 2573 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o  ->  A. x  e.  A  ( f `  x )  =  1 ) )
7353, 72orim12d 788 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (
( E. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  (/)  \/  A. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  1o )  ->  ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) ) )
7420, 73mpd 13 . . . 4  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )
7574ralrimiva 2580 . . 3  |-  ( ( A  e.  V  /\  A. g  e.  ( 2o 
^m  A ) ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o ) )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )
76 fveq1 5588 . . . . . . . . 9  |-  ( f  =  ( G  o.  g )  ->  (
f `  x )  =  ( ( G  o.  g ) `  x ) )
7776eqeq1d 2215 . . . . . . . 8  |-  ( f  =  ( G  o.  g )  ->  (
( f `  x
)  =  0  <->  (
( G  o.  g
) `  x )  =  0 ) )
7877rexbidv 2508 . . . . . . 7  |-  ( f  =  ( G  o.  g )  ->  ( E. x  e.  A  ( f `  x
)  =  0  <->  E. x  e.  A  (
( G  o.  g
) `  x )  =  0 ) )
7976eqeq1d 2215 . . . . . . . 8  |-  ( f  =  ( G  o.  g )  ->  (
( f `  x
)  =  1  <->  (
( G  o.  g
) `  x )  =  1 ) )
8079ralbidv 2507 . . . . . . 7  |-  ( f  =  ( G  o.  g )  ->  ( A. x  e.  A  ( f `  x
)  =  1  <->  A. x  e.  A  (
( G  o.  g
) `  x )  =  1 ) )
8178, 80orbi12d 795 . . . . . 6  |-  ( f  =  ( G  o.  g )  ->  (
( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )  <->  ( E. x  e.  A  ( ( G  o.  g ) `  x )  =  0  \/  A. x  e.  A  ( ( G  o.  g ) `  x )  =  1 ) ) )
82 simplr 528 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )
8392o01f 16070 . . . . . . . 8  |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
84 elmapi 6770 . . . . . . . . 9  |-  ( g  e.  ( 2o  ^m  A )  ->  g : A --> 2o )
8584adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  g : A --> 2o )
86 fco2 5452 . . . . . . . 8  |-  ( ( ( G  |`  2o ) : 2o --> { 0 ,  1 }  /\  g : A --> 2o )  ->  ( G  o.  g ) : A --> { 0 ,  1 } )
8783, 85, 86sylancr 414 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( G  o.  g ) : A --> { 0 ,  1 } )
88 prexg 4263 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  e.  _V )
8931, 32, 88mp2an 426 . . . . . . . . 9  |-  { 0 ,  1 }  e.  _V
9089a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  { 0 ,  1 }  e.  _V )
91 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  A  e.  V )
9290, 91elmapd 6762 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
( G  o.  g
)  e.  ( { 0 ,  1 }  ^m  A )  <->  ( G  o.  g ) : A --> { 0 ,  1 } ) )
9387, 92mpbird 167 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( G  o.  g )  e.  ( { 0 ,  1 }  ^m  A
) )
9481, 82, 93rspcdva 2886 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( ( G  o.  g ) `  x
)  =  0  \/ 
A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1 ) )
95 nfcv 2349 . . . . . . . . . 10  |-  F/_ x
( { 0 ,  1 }  ^m  A
)
96 nfre1 2550 . . . . . . . . . . 11  |-  F/ x E. x  e.  A  ( f `  x
)  =  0
97 nfra1 2538 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( f `  x
)  =  1
9896, 97nfor 1598 . . . . . . . . . 10  |-  F/ x
( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
9995, 98nfralxy 2545 . . . . . . . . 9  |-  F/ x A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
10021, 99nfan 1589 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )
101 nfv 1552 . . . . . . . 8  |-  F/ x  g  e.  ( 2o  ^m  A )
102100, 101nfan 1589 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )
10384ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  g : A --> 2o )
104 omelon 4665 . . . . . . . . . . . . . . . 16  |-  om  e.  On
105104onelssi 4484 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  2o  C_ 
om )
10615, 105ax-mp 5 . . . . . . . . . . . . . 14  |-  2o  C_  om
107106a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  2o  C_ 
om )
108103, 107fssd 5448 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  g : A --> om )
109 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  x  e.  A )
110108, 109ffvelcdmd 5729 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
g `  x )  e.  om )
111 f1ocnvfv1 5859 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN0  /\  ( g `
 x )  e. 
om )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
11230, 110, 111sylancr 414 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
113112adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( g `
 x ) )
114 fvco3 5663 . . . . . . . . . . . . . 14  |-  ( ( g : A --> 2o  /\  x  e.  A )  ->  ( ( G  o.  g ) `  x
)  =  ( G `
 ( g `  x ) ) )
115103, 114sylancom 420 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( G  o.  g
) `  x )  =  ( G `  ( g `  x
) ) )
116115eqeq1d 2215 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  0  <->  ( G `  ( g `  x ) )  =  0 ) )
117116biimpa 296 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( G `  (
g `  x )
)  =  0 )
118117fveq2d 5593 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( `' G `  0 ) )
119 f1ocnvfv 5861 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
12030, 61, 119mp2an 426 . . . . . . . . . . 11  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
12149, 120ax-mp 5 . . . . . . . . . 10  |-  ( `' G `  0 )  =  (/)
122118, 121eqtrdi 2255 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  (/) )
123113, 122eqtr3d 2241 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( g `  x
)  =  (/) )
124123exp31 364 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
x  e.  A  -> 
( ( ( G  o.  g ) `  x )  =  0  ->  ( g `  x )  =  (/) ) ) )
125102, 124reximdai 2605 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( ( G  o.  g ) `  x
)  =  0  ->  E. x  e.  A  ( g `  x
)  =  (/) ) )
126112adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( g `
 x ) )
127115eqeq1d 2215 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  <->  ( G `  ( g `  x ) )  =  1 ) )
128127biimpa 296 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( G `  (
g `  x )
)  =  1 )
129128fveq2d 5593 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( `' G `  1 ) )
130 1onn 6619 . . . . . . . . . . . 12  |-  1o  e.  om
131 f1ocnvfv 5861 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
13230, 130, 131mp2an 426 . . . . . . . . . . 11  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
13368, 132ax-mp 5 . . . . . . . . . 10  |-  ( `' G `  1 )  =  1o
134129, 133eqtrdi 2255 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  1o )
135126, 134eqtr3d 2241 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( g `  x
)  =  1o )
136135ex 115 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  -> 
( g `  x
)  =  1o ) )
137102, 136ralimdaa 2573 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1  ->  A. x  e.  A  ( g `  x
)  =  1o ) )
138125, 137orim12d 788 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
( E. x  e.  A  ( ( G  o.  g ) `  x )  =  0  \/  A. x  e.  A  ( ( G  o.  g ) `  x )  =  1 )  ->  ( E. x  e.  A  (
g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) ) )
13994, 138mpd 13 . . . 4  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o ) )
140139ralrimiva 2580 . . 3  |-  ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  ->  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )
14175, 140impbida 596 . 2  |-  ( A  e.  V  ->  ( A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o )  <->  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
1421, 141bitrd 188 1  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   T. wtru 1374    e. wcel 2177   A.wral 2485   E.wrex 2486   _Vcvv 2773    C_ wss 3170   (/)c0 3464   {cpr 3639    |-> cmpt 4113   suc csuc 4420   omcom 4646   `'ccnv 4682    |` cres 4685    o. ccom 4687   -->wf 5276   -1-1-onto->wf1o 5279   ` cfv 5280  (class class class)co 5957  freccfrec 6489   1oc1o 6508   2oc2o 6509    ^m cmap 6748  Omnicomni 7251   0cc0 7945   1c1 7946    + caddc 7948   NN0cn0 9315   ZZcz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-map 6750  df-omni 7252  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669
This theorem is referenced by:  isomninn  16111
  Copyright terms: Public domain W3C validator