Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  isomninnlem Unicode version

Theorem isomninnlem 14022
Description: Lemma for isomninn 14023. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
Hypothesis
Ref Expression
isomninnlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
isomninnlem  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
Distinct variable groups:    A, f, x   
f, G, x    f, V, x

Proof of Theorem isomninnlem
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 isomnimap 7109 . 2  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) ) )
2 fveq1 5493 . . . . . . . . 9  |-  ( g  =  ( `' G  o.  f )  ->  (
g `  x )  =  ( ( `' G  o.  f ) `
 x ) )
32eqeq1d 2179 . . . . . . . 8  |-  ( g  =  ( `' G  o.  f )  ->  (
( g `  x
)  =  (/)  <->  ( ( `' G  o.  f
) `  x )  =  (/) ) )
43rexbidv 2471 . . . . . . 7  |-  ( g  =  ( `' G  o.  f )  ->  ( E. x  e.  A  ( g `  x
)  =  (/)  <->  E. x  e.  A  ( ( `' G  o.  f
) `  x )  =  (/) ) )
52eqeq1d 2179 . . . . . . . 8  |-  ( g  =  ( `' G  o.  f )  ->  (
( g `  x
)  =  1o  <->  ( ( `' G  o.  f
) `  x )  =  1o ) )
65ralbidv 2470 . . . . . . 7  |-  ( g  =  ( `' G  o.  f )  ->  ( A. x  e.  A  ( g `  x
)  =  1o  <->  A. x  e.  A  ( ( `' G  o.  f
) `  x )  =  1o ) )
74, 6orbi12d 788 . . . . . 6  |-  ( g  =  ( `' G  o.  f )  ->  (
( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o )  <-> 
( E. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  (/)  \/  A. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  1o ) ) )
8 simplr 525 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )
9 isomninnlem.g . . . . . . . . 9  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
109012of 13988 . . . . . . . 8  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
11 elmapi 6644 . . . . . . . . 9  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  f : A --> { 0 ,  1 } )
1211adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  f : A --> { 0 ,  1 } )
13 fco2 5362 . . . . . . . 8  |-  ( ( ( `' G  |`  { 0 ,  1 } ) : {
0 ,  1 } --> 2o  /\  f : A --> { 0 ,  1 } )  -> 
( `' G  o.  f ) : A --> 2o )
1410, 12, 13sylancr 412 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( `' G  o.  f
) : A --> 2o )
15 2onn 6497 . . . . . . . . 9  |-  2o  e.  om
1615a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  2o  e.  om )
17 simpll 524 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  A  e.  V )
1816, 17elmapd 6636 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (
( `' G  o.  f )  e.  ( 2o  ^m  A )  <-> 
( `' G  o.  f ) : A --> 2o ) )
1914, 18mpbird 166 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( `' G  o.  f
)  e.  ( 2o 
^m  A ) )
207, 8, 19rspcdva 2839 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( E. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  (/)  \/  A. x  e.  A  (
( `' G  o.  f ) `  x
)  =  1o ) )
21 nfv 1521 . . . . . . . . 9  |-  F/ x  A  e.  V
22 nfcv 2312 . . . . . . . . . 10  |-  F/_ x
( 2o  ^m  A
)
23 nfre1 2513 . . . . . . . . . . 11  |-  F/ x E. x  e.  A  ( g `  x
)  =  (/)
24 nfra1 2501 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( g `  x
)  =  1o
2523, 24nfor 1567 . . . . . . . . . 10  |-  F/ x
( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o )
2622, 25nfralxy 2508 . . . . . . . . 9  |-  F/ x A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o )
2721, 26nfan 1558 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )
28 nfv 1521 . . . . . . . 8  |-  F/ x  f  e.  ( {
0 ,  1 }  ^m  A )
2927, 28nfan 1558 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )
309frechashgf1o 10371 . . . . . . . . . . 11  |-  G : om
-1-1-onto-> NN0
31 0nn0 9137 . . . . . . . . . . . . 13  |-  0  e.  NN0
32 1nn0 9138 . . . . . . . . . . . . 13  |-  1  e.  NN0
33 prssi 3736 . . . . . . . . . . . . 13  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
3431, 32, 33mp2an 424 . . . . . . . . . . . 12  |-  { 0 ,  1 }  C_  NN0
3511ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  f : A --> { 0 ,  1 } )
36 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  x  e.  A )
3735, 36ffvelrnd 5629 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
f `  x )  e.  { 0 ,  1 } )
3834, 37sselid 3145 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
f `  x )  e.  NN0 )
39 f1ocnvfv2 5754 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN0  /\  ( f `
 x )  e. 
NN0 )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
4030, 38, 39sylancr 412 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
4140adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( G `  ( `' G `  ( f `
 x ) ) )  =  ( f `
 x ) )
42 fvco3 5565 . . . . . . . . . . . . . 14  |-  ( ( f : A --> { 0 ,  1 }  /\  x  e.  A )  ->  ( ( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
4335, 42sylancom 418 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
4443eqeq1d 2179 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  (/)  <->  ( `' G `  ( f `  x ) )  =  (/) ) )
4544biimpa 294 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( `' G `  ( f `  x
) )  =  (/) )
4645fveq2d 5498 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 (/) ) )
47 0zd 9211 . . . . . . . . . . . 12  |-  ( T. 
->  0  e.  ZZ )
4847, 9frec2uz0d 10342 . . . . . . . . . . 11  |-  ( T. 
->  ( G `  (/) )  =  0 )
4948mptru 1357 . . . . . . . . . 10  |-  ( G `
 (/) )  =  0
5046, 49eqtrdi 2219 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( G `  ( `' G `  ( f `
 x ) ) )  =  0 )
5141, 50eqtr3d 2205 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  (/) )  -> 
( f `  x
)  =  0 )
5251exp31 362 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (
x  e.  A  -> 
( ( ( `' G  o.  f ) `
 x )  =  (/)  ->  ( f `  x )  =  0 ) ) )
5329, 52reximdai 2568 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( E. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  (/)  ->  E. x  e.  A  ( f `  x )  =  0 ) )
5440adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( G `  ( `' G `  ( f `
 x ) ) )  =  ( f `
 x ) )
5543adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( ( `' G  o.  f ) `
 x )  =  ( `' G `  ( f `  x
) ) )
56 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( ( `' G  o.  f ) `
 x )  =  1o )
5755, 56eqtr3d 2205 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( `' G `  ( f `  x
) )  =  1o )
5857fveq2d 5498 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o ) )
59 df-1o 6392 . . . . . . . . . . . 12  |-  1o  =  suc  (/)
6059fveq2i 5497 . . . . . . . . . . 11  |-  ( G `
 1o )  =  ( G `  suc  (/) )
61 peano1 4576 . . . . . . . . . . . . . 14  |-  (/)  e.  om
6261a1i 9 . . . . . . . . . . . . 13  |-  ( T. 
->  (/)  e.  om )
6347, 9, 62frec2uzsucd 10344 . . . . . . . . . . . 12  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
6463mptru 1357 . . . . . . . . . . 11  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
6549oveq1i 5860 . . . . . . . . . . . 12  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
66 0p1e1 8979 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
6765, 66eqtri 2191 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  1
6860, 64, 673eqtri 2195 . . . . . . . . . 10  |-  ( G `
 1o )  =  1
6958, 68eqtrdi 2219 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( G `  ( `' G `  ( f `
 x ) ) )  =  1 )
7054, 69eqtr3d 2205 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  /\  (
( `' G  o.  f ) `  x
)  =  1o )  ->  ( f `  x )  =  1 )
7170ex 114 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  1o  ->  ( f `  x )  =  1 ) )
7229, 71ralimdaa 2536 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o  ->  A. x  e.  A  ( f `  x )  =  1 ) )
7353, 72orim12d 781 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (
( E. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  (/)  \/  A. x  e.  A  ( ( `' G  o.  f ) `
 x )  =  1o )  ->  ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) ) )
7420, 73mpd 13 . . . 4  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )
7574ralrimiva 2543 . . 3  |-  ( ( A  e.  V  /\  A. g  e.  ( 2o 
^m  A ) ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o ) )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )
76 fveq1 5493 . . . . . . . . 9  |-  ( f  =  ( G  o.  g )  ->  (
f `  x )  =  ( ( G  o.  g ) `  x ) )
7776eqeq1d 2179 . . . . . . . 8  |-  ( f  =  ( G  o.  g )  ->  (
( f `  x
)  =  0  <->  (
( G  o.  g
) `  x )  =  0 ) )
7877rexbidv 2471 . . . . . . 7  |-  ( f  =  ( G  o.  g )  ->  ( E. x  e.  A  ( f `  x
)  =  0  <->  E. x  e.  A  (
( G  o.  g
) `  x )  =  0 ) )
7976eqeq1d 2179 . . . . . . . 8  |-  ( f  =  ( G  o.  g )  ->  (
( f `  x
)  =  1  <->  (
( G  o.  g
) `  x )  =  1 ) )
8079ralbidv 2470 . . . . . . 7  |-  ( f  =  ( G  o.  g )  ->  ( A. x  e.  A  ( f `  x
)  =  1  <->  A. x  e.  A  (
( G  o.  g
) `  x )  =  1 ) )
8178, 80orbi12d 788 . . . . . 6  |-  ( f  =  ( G  o.  g )  ->  (
( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )  <->  ( E. x  e.  A  ( ( G  o.  g ) `  x )  =  0  \/  A. x  e.  A  ( ( G  o.  g ) `  x )  =  1 ) ) )
82 simplr 525 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )
8392o01f 13989 . . . . . . . 8  |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
84 elmapi 6644 . . . . . . . . 9  |-  ( g  e.  ( 2o  ^m  A )  ->  g : A --> 2o )
8584adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  g : A --> 2o )
86 fco2 5362 . . . . . . . 8  |-  ( ( ( G  |`  2o ) : 2o --> { 0 ,  1 }  /\  g : A --> 2o )  ->  ( G  o.  g ) : A --> { 0 ,  1 } )
8783, 85, 86sylancr 412 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( G  o.  g ) : A --> { 0 ,  1 } )
88 prexg 4194 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  e.  _V )
8931, 32, 88mp2an 424 . . . . . . . . 9  |-  { 0 ,  1 }  e.  _V
9089a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  { 0 ,  1 }  e.  _V )
91 simpll 524 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  A  e.  V )
9290, 91elmapd 6636 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
( G  o.  g
)  e.  ( { 0 ,  1 }  ^m  A )  <->  ( G  o.  g ) : A --> { 0 ,  1 } ) )
9387, 92mpbird 166 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( G  o.  g )  e.  ( { 0 ,  1 }  ^m  A
) )
9481, 82, 93rspcdva 2839 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( ( G  o.  g ) `  x
)  =  0  \/ 
A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1 ) )
95 nfcv 2312 . . . . . . . . . 10  |-  F/_ x
( { 0 ,  1 }  ^m  A
)
96 nfre1 2513 . . . . . . . . . . 11  |-  F/ x E. x  e.  A  ( f `  x
)  =  0
97 nfra1 2501 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( f `  x
)  =  1
9896, 97nfor 1567 . . . . . . . . . 10  |-  F/ x
( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
9995, 98nfralxy 2508 . . . . . . . . 9  |-  F/ x A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
10021, 99nfan 1558 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )
101 nfv 1521 . . . . . . . 8  |-  F/ x  g  e.  ( 2o  ^m  A )
102100, 101nfan 1558 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )
10384ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  g : A --> 2o )
104 omelon 4591 . . . . . . . . . . . . . . . 16  |-  om  e.  On
105104onelssi 4412 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  2o  C_ 
om )
10615, 105ax-mp 5 . . . . . . . . . . . . . 14  |-  2o  C_  om
107106a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  2o  C_ 
om )
108103, 107fssd 5358 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  g : A --> om )
109 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  x  e.  A )
110108, 109ffvelrnd 5629 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
g `  x )  e.  om )
111 f1ocnvfv1 5753 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> NN0  /\  ( g `
 x )  e. 
om )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
11230, 110, 111sylancr 412 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
113112adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( g `
 x ) )
114 fvco3 5565 . . . . . . . . . . . . . 14  |-  ( ( g : A --> 2o  /\  x  e.  A )  ->  ( ( G  o.  g ) `  x
)  =  ( G `
 ( g `  x ) ) )
115103, 114sylancom 418 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( G  o.  g
) `  x )  =  ( G `  ( g `  x
) ) )
116115eqeq1d 2179 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  0  <->  ( G `  ( g `  x ) )  =  0 ) )
117116biimpa 294 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( G `  (
g `  x )
)  =  0 )
118117fveq2d 5498 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( `' G `  0 ) )
119 f1ocnvfv 5755 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
12030, 61, 119mp2an 424 . . . . . . . . . . 11  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
12149, 120ax-mp 5 . . . . . . . . . 10  |-  ( `' G `  0 )  =  (/)
122118, 121eqtrdi 2219 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  (/) )
123113, 122eqtr3d 2205 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  0 )  -> 
( g `  x
)  =  (/) )
124123exp31 362 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
x  e.  A  -> 
( ( ( G  o.  g ) `  x )  =  0  ->  ( g `  x )  =  (/) ) ) )
125102, 124reximdai 2568 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( ( G  o.  g ) `  x
)  =  0  ->  E. x  e.  A  ( g `  x
)  =  (/) ) )
126112adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( g `
 x ) )
127115eqeq1d 2179 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  <->  ( G `  ( g `  x ) )  =  1 ) )
128127biimpa 294 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( G `  (
g `  x )
)  =  1 )
129128fveq2d 5498 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  ( `' G `  1 ) )
130 1onn 6496 . . . . . . . . . . . 12  |-  1o  e.  om
131 f1ocnvfv 5755 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
13230, 130, 131mp2an 424 . . . . . . . . . . 11  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
13368, 132ax-mp 5 . . . . . . . . . 10  |-  ( `' G `  1 )  =  1o
134129, 133eqtrdi 2219 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( `' G `  ( G `  ( g `
 x ) ) )  =  1o )
135126, 134eqtr3d 2205 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( {
0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  /\  (
( G  o.  g
) `  x )  =  1 )  -> 
( g `  x
)  =  1o )
136135ex 114 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  -> 
( g `  x
)  =  1o ) )
137102, 136ralimdaa 2536 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1  ->  A. x  e.  A  ( g `  x
)  =  1o ) )
138125, 137orim12d 781 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
( E. x  e.  A  ( ( G  o.  g ) `  x )  =  0  \/  A. x  e.  A  ( ( G  o.  g ) `  x )  =  1 )  ->  ( E. x  e.  A  (
g `  x )  =  (/)  \/  A. x  e.  A  ( g `  x )  =  1o ) ) )
13994, 138mpd 13 . . . 4  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o ) )
140139ralrimiva 2543 . . 3  |-  ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x
)  =  0  \/ 
A. x  e.  A  ( f `  x
)  =  1 ) )  ->  A. g  e.  ( 2o  ^m  A
) ( E. x  e.  A  ( g `  x )  =  (/)  \/ 
A. x  e.  A  ( g `  x
)  =  1o ) )
14175, 140impbida 591 . 2  |-  ( A  e.  V  ->  ( A. g  e.  ( 2o  ^m  A ) ( E. x  e.  A  ( g `  x
)  =  (/)  \/  A. x  e.  A  (
g `  x )  =  1o )  <->  A. f  e.  ( { 0 ,  1 }  ^m  A
) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
1421, 141bitrd 187 1  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348   T. wtru 1349    e. wcel 2141   A.wral 2448   E.wrex 2449   _Vcvv 2730    C_ wss 3121   (/)c0 3414   {cpr 3582    |-> cmpt 4048   suc csuc 4348   omcom 4572   `'ccnv 4608    |` cres 4611    o. ccom 4613   -->wf 5192   -1-1-onto->wf1o 5195   ` cfv 5196  (class class class)co 5850  freccfrec 6366   1oc1o 6385   2oc2o 6386    ^m cmap 6622  Omnicomni 7106   0cc0 7761   1c1 7762    + caddc 7764   NN0cn0 9122   ZZcz 9199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-recs 6281  df-frec 6367  df-1o 6392  df-2o 6393  df-map 6624  df-omni 7107  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475
This theorem is referenced by:  isomninn  14023
  Copyright terms: Public domain W3C validator