ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimiaa Unicode version

Theorem ralimiaa 2528
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1  |-  ( ( x  e.  A  /\  ph )  ->  ps )
Assertion
Ref Expression
ralimiaa  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ps )
21ex 114 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
32ralimia 2527 1  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-ral 2449
This theorem is referenced by:  ralrnmpt  5627  rexrnmpt  5628  acexmidlem2  5839  mptelixpg  6700  trirec0  13923
  Copyright terms: Public domain W3C validator