| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptelixpg | Unicode version | ||
| Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
| Ref | Expression |
|---|---|
| mptelixpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | nfcv 2372 |
. . . . . 6
| |
| 3 | nfcsb1v 3157 |
. . . . . 6
| |
| 4 | csbeq1a 3133 |
. . . . . 6
| |
| 5 | 2, 3, 4 | cbvixp 6860 |
. . . . 5
|
| 6 | 5 | eleq2i 2296 |
. . . 4
|
| 7 | elixp2 6847 |
. . . 4
| |
| 8 | 3anass 1006 |
. . . 4
| |
| 9 | 6, 7, 8 | 3bitri 206 |
. . 3
|
| 10 | eqid 2229 |
. . . . . . . 8
| |
| 11 | 10 | fnmpt 5449 |
. . . . . . 7
|
| 12 | 10 | fvmpt2 5717 |
. . . . . . . . 9
|
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eqeltrd 2306 |
. . . . . . . 8
|
| 15 | 14 | ralimiaa 2592 |
. . . . . . 7
|
| 16 | 11, 15 | jca 306 |
. . . . . 6
|
| 17 | dffn2 5474 |
. . . . . . . 8
| |
| 18 | 10 | fmpt 5784 |
. . . . . . . . 9
|
| 19 | 10 | fvmpt2 5717 |
. . . . . . . . . . . . 13
|
| 20 | 19 | eleq1d 2298 |
. . . . . . . . . . . 12
|
| 21 | 20 | biimpd 144 |
. . . . . . . . . . 11
|
| 22 | 21 | ralimiaa 2592 |
. . . . . . . . . 10
|
| 23 | ralim 2589 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 18, 24 | sylbir 135 |
. . . . . . . 8
|
| 26 | 17, 25 | sylbi 121 |
. . . . . . 7
|
| 27 | 26 | imp 124 |
. . . . . 6
|
| 28 | 16, 27 | impbii 126 |
. . . . 5
|
| 29 | nfv 1574 |
. . . . . . 7
| |
| 30 | nffvmpt1 5637 |
. . . . . . . 8
| |
| 31 | 30, 3 | nfel 2381 |
. . . . . . 7
|
| 32 | fveq2 5626 |
. . . . . . . 8
| |
| 33 | 32, 4 | eleq12d 2300 |
. . . . . . 7
|
| 34 | 29, 31, 33 | cbvral 2761 |
. . . . . 6
|
| 35 | 34 | anbi2i 457 |
. . . . 5
|
| 36 | 28, 35 | bitri 184 |
. . . 4
|
| 37 | mptexg 5863 |
. . . . 5
| |
| 38 | 37 | biantrurd 305 |
. . . 4
|
| 39 | 36, 38 | bitr2id 193 |
. . 3
|
| 40 | 9, 39 | bitrid 192 |
. 2
|
| 41 | 1, 40 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ixp 6844 |
| This theorem is referenced by: prdsbasmpt 13308 prdsbasmpt2 13316 |
| Copyright terms: Public domain | W3C validator |