| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptelixpg | Unicode version | ||
| Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
| Ref | Expression |
|---|---|
| mptelixpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | nfcv 2339 |
. . . . . 6
| |
| 3 | nfcsb1v 3117 |
. . . . . 6
| |
| 4 | csbeq1a 3093 |
. . . . . 6
| |
| 5 | 2, 3, 4 | cbvixp 6783 |
. . . . 5
|
| 6 | 5 | eleq2i 2263 |
. . . 4
|
| 7 | elixp2 6770 |
. . . 4
| |
| 8 | 3anass 984 |
. . . 4
| |
| 9 | 6, 7, 8 | 3bitri 206 |
. . 3
|
| 10 | eqid 2196 |
. . . . . . . 8
| |
| 11 | 10 | fnmpt 5387 |
. . . . . . 7
|
| 12 | 10 | fvmpt2 5648 |
. . . . . . . . 9
|
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eqeltrd 2273 |
. . . . . . . 8
|
| 15 | 14 | ralimiaa 2559 |
. . . . . . 7
|
| 16 | 11, 15 | jca 306 |
. . . . . 6
|
| 17 | dffn2 5412 |
. . . . . . . 8
| |
| 18 | 10 | fmpt 5715 |
. . . . . . . . 9
|
| 19 | 10 | fvmpt2 5648 |
. . . . . . . . . . . . 13
|
| 20 | 19 | eleq1d 2265 |
. . . . . . . . . . . 12
|
| 21 | 20 | biimpd 144 |
. . . . . . . . . . 11
|
| 22 | 21 | ralimiaa 2559 |
. . . . . . . . . 10
|
| 23 | ralim 2556 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 18, 24 | sylbir 135 |
. . . . . . . 8
|
| 26 | 17, 25 | sylbi 121 |
. . . . . . 7
|
| 27 | 26 | imp 124 |
. . . . . 6
|
| 28 | 16, 27 | impbii 126 |
. . . . 5
|
| 29 | nfv 1542 |
. . . . . . 7
| |
| 30 | nffvmpt1 5572 |
. . . . . . . 8
| |
| 31 | 30, 3 | nfel 2348 |
. . . . . . 7
|
| 32 | fveq2 5561 |
. . . . . . . 8
| |
| 33 | 32, 4 | eleq12d 2267 |
. . . . . . 7
|
| 34 | 29, 31, 33 | cbvral 2725 |
. . . . . 6
|
| 35 | 34 | anbi2i 457 |
. . . . 5
|
| 36 | 28, 35 | bitri 184 |
. . . 4
|
| 37 | mptexg 5790 |
. . . . 5
| |
| 38 | 37 | biantrurd 305 |
. . . 4
|
| 39 | 36, 38 | bitr2id 193 |
. . 3
|
| 40 | 9, 39 | bitrid 192 |
. 2
|
| 41 | 1, 40 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ixp 6767 |
| This theorem is referenced by: prdsbasmpt 12982 prdsbasmpt2 12990 |
| Copyright terms: Public domain | W3C validator |