ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptelixpg Unicode version

Theorem mptelixpg 6712
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg  |-  ( I  e.  V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
Distinct variable group:    x, I
Allowed substitution hints:    J( x)    K( x)    V( x)

Proof of Theorem mptelixpg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2741 . 2  |-  ( I  e.  V  ->  I  e.  _V )
2 nfcv 2312 . . . . . 6  |-  F/_ y K
3 nfcsb1v 3082 . . . . . 6  |-  F/_ x [_ y  /  x ]_ K
4 csbeq1a 3058 . . . . . 6  |-  ( x  =  y  ->  K  =  [_ y  /  x ]_ K )
52, 3, 4cbvixp 6693 . . . . 5  |-  X_ x  e.  I  K  =  X_ y  e.  I  [_ y  /  x ]_ K
65eleq2i 2237 . . . 4  |-  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  ( x  e.  I  |->  J )  e.  X_ y  e.  I  [_ y  /  x ]_ K )
7 elixp2 6680 . . . 4  |-  ( ( x  e.  I  |->  J )  e.  X_ y  e.  I  [_ y  /  x ]_ K  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
) )
8 3anass 977 . . . 4  |-  ( ( ( x  e.  I  |->  J )  e.  _V  /\  ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
)  <->  ( ( x  e.  I  |->  J )  e.  _V  /\  (
( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
) ) )
96, 7, 83bitri 205 . . 3  |-  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K ) ) )
10 eqid 2170 . . . . . . . 8  |-  ( x  e.  I  |->  J )  =  ( x  e.  I  |->  J )
1110fnmpt 5324 . . . . . . 7  |-  ( A. x  e.  I  J  e.  K  ->  ( x  e.  I  |->  J )  Fn  I )
1210fvmpt2 5579 . . . . . . . . 9  |-  ( ( x  e.  I  /\  J  e.  K )  ->  ( ( x  e.  I  |->  J ) `  x )  =  J )
13 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  I  /\  J  e.  K )  ->  J  e.  K )
1412, 13eqeltrd 2247 . . . . . . . 8  |-  ( ( x  e.  I  /\  J  e.  K )  ->  ( ( x  e.  I  |->  J ) `  x )  e.  K
)
1514ralimiaa 2532 . . . . . . 7  |-  ( A. x  e.  I  J  e.  K  ->  A. x  e.  I  ( (
x  e.  I  |->  J ) `  x )  e.  K )
1611, 15jca 304 . . . . . 6  |-  ( A. x  e.  I  J  e.  K  ->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I  ( ( x  e.  I  |->  J ) `  x
)  e.  K ) )
17 dffn2 5349 . . . . . . . 8  |-  ( ( x  e.  I  |->  J )  Fn  I  <->  ( x  e.  I  |->  J ) : I --> _V )
1810fmpt 5646 . . . . . . . . 9  |-  ( A. x  e.  I  J  e.  _V  <->  ( x  e.  I  |->  J ) : I --> _V )
1910fvmpt2 5579 . . . . . . . . . . . . 13  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( x  e.  I  |->  J ) `  x )  =  J )
2019eleq1d 2239 . . . . . . . . . . . 12  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( ( x  e.  I  |->  J ) `
 x )  e.  K  <->  J  e.  K
) )
2120biimpd 143 . . . . . . . . . . 11  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( ( x  e.  I  |->  J ) `
 x )  e.  K  ->  J  e.  K ) )
2221ralimiaa 2532 . . . . . . . . . 10  |-  ( A. x  e.  I  J  e.  _V  ->  A. x  e.  I  ( (
( x  e.  I  |->  J ) `  x
)  e.  K  ->  J  e.  K )
)
23 ralim 2529 . . . . . . . . . 10  |-  ( A. x  e.  I  (
( ( x  e.  I  |->  J ) `  x )  e.  K  ->  J  e.  K )  ->  ( A. x  e.  I  ( (
x  e.  I  |->  J ) `  x )  e.  K  ->  A. x  e.  I  J  e.  K ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( A. x  e.  I  J  e.  _V  ->  ( A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K  ->  A. x  e.  I  J  e.  K )
)
2518, 24sylbir 134 . . . . . . . 8  |-  ( ( x  e.  I  |->  J ) : I --> _V  ->  ( A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K  ->  A. x  e.  I  J  e.  K )
)
2617, 25sylbi 120 . . . . . . 7  |-  ( ( x  e.  I  |->  J )  Fn  I  -> 
( A. x  e.  I  ( ( x  e.  I  |->  J ) `
 x )  e.  K  ->  A. x  e.  I  J  e.  K ) )
2726imp 123 . . . . . 6  |-  ( ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K
)  ->  A. x  e.  I  J  e.  K )
2816, 27impbii 125 . . . . 5  |-  ( A. x  e.  I  J  e.  K  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K ) )
29 nfv 1521 . . . . . . 7  |-  F/ y ( ( x  e.  I  |->  J ) `  x )  e.  K
30 nffvmpt1 5507 . . . . . . . 8  |-  F/_ x
( ( x  e.  I  |->  J ) `  y )
3130, 3nfel 2321 . . . . . . 7  |-  F/ x
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
32 fveq2 5496 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  e.  I  |->  J ) `  x
)  =  ( ( x  e.  I  |->  J ) `  y ) )
3332, 4eleq12d 2241 . . . . . . 7  |-  ( x  =  y  ->  (
( ( x  e.  I  |->  J ) `  x )  e.  K  <->  ( ( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
3429, 31, 33cbvral 2692 . . . . . 6  |-  ( A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K  <->  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K )
3534anbi2i 454 . . . . 5  |-  ( ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K
)  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
3628, 35bitri 183 . . . 4  |-  ( A. x  e.  I  J  e.  K  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
37 mptexg 5721 . . . . 5  |-  ( I  e.  _V  ->  (
x  e.  I  |->  J )  e.  _V )
3837biantrurd 303 . . . 4  |-  ( I  e.  _V  ->  (
( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K )  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K ) ) ) )
3936, 38bitr2id 192 . . 3  |-  ( I  e.  _V  ->  (
( ( x  e.  I  |->  J )  e. 
_V  /\  ( (
x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( ( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )  <->  A. x  e.  I  J  e.  K )
)
409, 39syl5bb 191 . 2  |-  ( I  e.  _V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
411, 40syl 14 1  |-  ( I  e.  V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   A.wral 2448   _Vcvv 2730   [_csb 3049    |-> cmpt 4050    Fn wfn 5193   -->wf 5194   ` cfv 5198   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ixp 6677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator