Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptelixpg | Unicode version |
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
Ref | Expression |
---|---|
mptelixpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | nfcv 2312 | . . . . . 6 | |
3 | nfcsb1v 3082 | . . . . . 6 | |
4 | csbeq1a 3058 | . . . . . 6 | |
5 | 2, 3, 4 | cbvixp 6693 | . . . . 5 |
6 | 5 | eleq2i 2237 | . . . 4 |
7 | elixp2 6680 | . . . 4 | |
8 | 3anass 977 | . . . 4 | |
9 | 6, 7, 8 | 3bitri 205 | . . 3 |
10 | eqid 2170 | . . . . . . . 8 | |
11 | 10 | fnmpt 5324 | . . . . . . 7 |
12 | 10 | fvmpt2 5579 | . . . . . . . . 9 |
13 | simpr 109 | . . . . . . . . 9 | |
14 | 12, 13 | eqeltrd 2247 | . . . . . . . 8 |
15 | 14 | ralimiaa 2532 | . . . . . . 7 |
16 | 11, 15 | jca 304 | . . . . . 6 |
17 | dffn2 5349 | . . . . . . . 8 | |
18 | 10 | fmpt 5646 | . . . . . . . . 9 |
19 | 10 | fvmpt2 5579 | . . . . . . . . . . . . 13 |
20 | 19 | eleq1d 2239 | . . . . . . . . . . . 12 |
21 | 20 | biimpd 143 | . . . . . . . . . . 11 |
22 | 21 | ralimiaa 2532 | . . . . . . . . . 10 |
23 | ralim 2529 | . . . . . . . . . 10 | |
24 | 22, 23 | syl 14 | . . . . . . . . 9 |
25 | 18, 24 | sylbir 134 | . . . . . . . 8 |
26 | 17, 25 | sylbi 120 | . . . . . . 7 |
27 | 26 | imp 123 | . . . . . 6 |
28 | 16, 27 | impbii 125 | . . . . 5 |
29 | nfv 1521 | . . . . . . 7 | |
30 | nffvmpt1 5507 | . . . . . . . 8 | |
31 | 30, 3 | nfel 2321 | . . . . . . 7 |
32 | fveq2 5496 | . . . . . . . 8 | |
33 | 32, 4 | eleq12d 2241 | . . . . . . 7 |
34 | 29, 31, 33 | cbvral 2692 | . . . . . 6 |
35 | 34 | anbi2i 454 | . . . . 5 |
36 | 28, 35 | bitri 183 | . . . 4 |
37 | mptexg 5721 | . . . . 5 | |
38 | 37 | biantrurd 303 | . . . 4 |
39 | 36, 38 | bitr2id 192 | . . 3 |
40 | 9, 39 | syl5bb 191 | . 2 |
41 | 1, 40 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wcel 2141 wral 2448 cvv 2730 csb 3049 cmpt 4050 wfn 5193 wf 5194 cfv 5198 cixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ixp 6677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |