| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptelixpg | Unicode version | ||
| Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
| Ref | Expression |
|---|---|
| mptelixpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 |
. 2
| |
| 2 | nfcv 2349 |
. . . . . 6
| |
| 3 | nfcsb1v 3130 |
. . . . . 6
| |
| 4 | csbeq1a 3106 |
. . . . . 6
| |
| 5 | 2, 3, 4 | cbvixp 6815 |
. . . . 5
|
| 6 | 5 | eleq2i 2273 |
. . . 4
|
| 7 | elixp2 6802 |
. . . 4
| |
| 8 | 3anass 985 |
. . . 4
| |
| 9 | 6, 7, 8 | 3bitri 206 |
. . 3
|
| 10 | eqid 2206 |
. . . . . . . 8
| |
| 11 | 10 | fnmpt 5412 |
. . . . . . 7
|
| 12 | 10 | fvmpt2 5676 |
. . . . . . . . 9
|
| 13 | simpr 110 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eqeltrd 2283 |
. . . . . . . 8
|
| 15 | 14 | ralimiaa 2569 |
. . . . . . 7
|
| 16 | 11, 15 | jca 306 |
. . . . . 6
|
| 17 | dffn2 5437 |
. . . . . . . 8
| |
| 18 | 10 | fmpt 5743 |
. . . . . . . . 9
|
| 19 | 10 | fvmpt2 5676 |
. . . . . . . . . . . . 13
|
| 20 | 19 | eleq1d 2275 |
. . . . . . . . . . . 12
|
| 21 | 20 | biimpd 144 |
. . . . . . . . . . 11
|
| 22 | 21 | ralimiaa 2569 |
. . . . . . . . . 10
|
| 23 | ralim 2566 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | 18, 24 | sylbir 135 |
. . . . . . . 8
|
| 26 | 17, 25 | sylbi 121 |
. . . . . . 7
|
| 27 | 26 | imp 124 |
. . . . . 6
|
| 28 | 16, 27 | impbii 126 |
. . . . 5
|
| 29 | nfv 1552 |
. . . . . . 7
| |
| 30 | nffvmpt1 5600 |
. . . . . . . 8
| |
| 31 | 30, 3 | nfel 2358 |
. . . . . . 7
|
| 32 | fveq2 5589 |
. . . . . . . 8
| |
| 33 | 32, 4 | eleq12d 2277 |
. . . . . . 7
|
| 34 | 29, 31, 33 | cbvral 2735 |
. . . . . 6
|
| 35 | 34 | anbi2i 457 |
. . . . 5
|
| 36 | 28, 35 | bitri 184 |
. . . 4
|
| 37 | mptexg 5822 |
. . . . 5
| |
| 38 | 37 | biantrurd 305 |
. . . 4
|
| 39 | 36, 38 | bitr2id 193 |
. . 3
|
| 40 | 9, 39 | bitrid 192 |
. 2
|
| 41 | 1, 40 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ixp 6799 |
| This theorem is referenced by: prdsbasmpt 13187 prdsbasmpt2 13195 |
| Copyright terms: Public domain | W3C validator |