| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mptelixpg | Unicode version | ||
| Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mptelixpg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | nfcv 2339 | 
. . . . . 6
 | |
| 3 | nfcsb1v 3117 | 
. . . . . 6
 | |
| 4 | csbeq1a 3093 | 
. . . . . 6
 | |
| 5 | 2, 3, 4 | cbvixp 6774 | 
. . . . 5
 | 
| 6 | 5 | eleq2i 2263 | 
. . . 4
 | 
| 7 | elixp2 6761 | 
. . . 4
 | |
| 8 | 3anass 984 | 
. . . 4
 | |
| 9 | 6, 7, 8 | 3bitri 206 | 
. . 3
 | 
| 10 | eqid 2196 | 
. . . . . . . 8
 | |
| 11 | 10 | fnmpt 5384 | 
. . . . . . 7
 | 
| 12 | 10 | fvmpt2 5645 | 
. . . . . . . . 9
 | 
| 13 | simpr 110 | 
. . . . . . . . 9
 | |
| 14 | 12, 13 | eqeltrd 2273 | 
. . . . . . . 8
 | 
| 15 | 14 | ralimiaa 2559 | 
. . . . . . 7
 | 
| 16 | 11, 15 | jca 306 | 
. . . . . 6
 | 
| 17 | dffn2 5409 | 
. . . . . . . 8
 | |
| 18 | 10 | fmpt 5712 | 
. . . . . . . . 9
 | 
| 19 | 10 | fvmpt2 5645 | 
. . . . . . . . . . . . 13
 | 
| 20 | 19 | eleq1d 2265 | 
. . . . . . . . . . . 12
 | 
| 21 | 20 | biimpd 144 | 
. . . . . . . . . . 11
 | 
| 22 | 21 | ralimiaa 2559 | 
. . . . . . . . . 10
 | 
| 23 | ralim 2556 | 
. . . . . . . . . 10
 | |
| 24 | 22, 23 | syl 14 | 
. . . . . . . . 9
 | 
| 25 | 18, 24 | sylbir 135 | 
. . . . . . . 8
 | 
| 26 | 17, 25 | sylbi 121 | 
. . . . . . 7
 | 
| 27 | 26 | imp 124 | 
. . . . . 6
 | 
| 28 | 16, 27 | impbii 126 | 
. . . . 5
 | 
| 29 | nfv 1542 | 
. . . . . . 7
 | |
| 30 | nffvmpt1 5569 | 
. . . . . . . 8
 | |
| 31 | 30, 3 | nfel 2348 | 
. . . . . . 7
 | 
| 32 | fveq2 5558 | 
. . . . . . . 8
 | |
| 33 | 32, 4 | eleq12d 2267 | 
. . . . . . 7
 | 
| 34 | 29, 31, 33 | cbvral 2725 | 
. . . . . 6
 | 
| 35 | 34 | anbi2i 457 | 
. . . . 5
 | 
| 36 | 28, 35 | bitri 184 | 
. . . 4
 | 
| 37 | mptexg 5787 | 
. . . . 5
 | |
| 38 | 37 | biantrurd 305 | 
. . . 4
 | 
| 39 | 36, 38 | bitr2id 193 | 
. . 3
 | 
| 40 | 9, 39 | bitrid 192 | 
. 2
 | 
| 41 | 1, 40 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ixp 6758 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |