Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptelixpg | Unicode version |
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.) |
Ref | Expression |
---|---|
mptelixpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | nfcv 2308 | . . . . . 6 | |
3 | nfcsb1v 3078 | . . . . . 6 | |
4 | csbeq1a 3054 | . . . . . 6 | |
5 | 2, 3, 4 | cbvixp 6681 | . . . . 5 |
6 | 5 | eleq2i 2233 | . . . 4 |
7 | elixp2 6668 | . . . 4 | |
8 | 3anass 972 | . . . 4 | |
9 | 6, 7, 8 | 3bitri 205 | . . 3 |
10 | eqid 2165 | . . . . . . . 8 | |
11 | 10 | fnmpt 5314 | . . . . . . 7 |
12 | 10 | fvmpt2 5569 | . . . . . . . . 9 |
13 | simpr 109 | . . . . . . . . 9 | |
14 | 12, 13 | eqeltrd 2243 | . . . . . . . 8 |
15 | 14 | ralimiaa 2528 | . . . . . . 7 |
16 | 11, 15 | jca 304 | . . . . . 6 |
17 | dffn2 5339 | . . . . . . . 8 | |
18 | 10 | fmpt 5635 | . . . . . . . . 9 |
19 | 10 | fvmpt2 5569 | . . . . . . . . . . . . 13 |
20 | 19 | eleq1d 2235 | . . . . . . . . . . . 12 |
21 | 20 | biimpd 143 | . . . . . . . . . . 11 |
22 | 21 | ralimiaa 2528 | . . . . . . . . . 10 |
23 | ralim 2525 | . . . . . . . . . 10 | |
24 | 22, 23 | syl 14 | . . . . . . . . 9 |
25 | 18, 24 | sylbir 134 | . . . . . . . 8 |
26 | 17, 25 | sylbi 120 | . . . . . . 7 |
27 | 26 | imp 123 | . . . . . 6 |
28 | 16, 27 | impbii 125 | . . . . 5 |
29 | nfv 1516 | . . . . . . 7 | |
30 | nffvmpt1 5497 | . . . . . . . 8 | |
31 | 30, 3 | nfel 2317 | . . . . . . 7 |
32 | fveq2 5486 | . . . . . . . 8 | |
33 | 32, 4 | eleq12d 2237 | . . . . . . 7 |
34 | 29, 31, 33 | cbvral 2688 | . . . . . 6 |
35 | 34 | anbi2i 453 | . . . . 5 |
36 | 28, 35 | bitri 183 | . . . 4 |
37 | mptexg 5710 | . . . . 5 | |
38 | 37 | biantrurd 303 | . . . 4 |
39 | 36, 38 | bitr2id 192 | . . 3 |
40 | 9, 39 | syl5bb 191 | . 2 |
41 | 1, 40 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 wral 2444 cvv 2726 csb 3045 cmpt 4043 wfn 5183 wf 5184 cfv 5188 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ixp 6665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |