| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlem2 | Unicode version | ||
| Description: Lemma for acexmid 5943. This builds on acexmidlem1 5940 by noting that every
element of
(Note that
The set (Contributed by Jim Kingdon, 5-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. . . . 5
| |
| 2 | 19.23v 1906 |
. . . . 5
| |
| 3 | 1, 2 | bitr2i 185 |
. . . 4
|
| 4 | acexmidlem.c |
. . . . . . . . 9
| |
| 5 | 4 | eleq2i 2272 |
. . . . . . . 8
|
| 6 | vex 2775 |
. . . . . . . . 9
| |
| 7 | 6 | elpr 3654 |
. . . . . . . 8
|
| 8 | 5, 7 | bitri 184 |
. . . . . . 7
|
| 9 | onsucelsucexmidlem1 4576 |
. . . . . . . . . . 11
| |
| 10 | acexmidlem.a |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | eleqtrri 2281 |
. . . . . . . . . 10
|
| 12 | elex2 2788 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
|
| 14 | eleq2 2269 |
. . . . . . . . . 10
| |
| 15 | 14 | exbidv 1848 |
. . . . . . . . 9
|
| 16 | 13, 15 | mpbiri 168 |
. . . . . . . 8
|
| 17 | p0ex 4232 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | prid2 3740 |
. . . . . . . . . . . 12
|
| 19 | eqid 2205 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | orci 733 |
. . . . . . . . . . . 12
|
| 21 | eqeq1 2212 |
. . . . . . . . . . . . . 14
| |
| 22 | 21 | orbi1d 793 |
. . . . . . . . . . . . 13
|
| 23 | 22 | elrab 2929 |
. . . . . . . . . . . 12
|
| 24 | 18, 20, 23 | mpbir2an 945 |
. . . . . . . . . . 11
|
| 25 | acexmidlem.b |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | eleqtrri 2281 |
. . . . . . . . . 10
|
| 27 | elex2 2788 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
|
| 29 | eleq2 2269 |
. . . . . . . . . 10
| |
| 30 | 29 | exbidv 1848 |
. . . . . . . . 9
|
| 31 | 28, 30 | mpbiri 168 |
. . . . . . . 8
|
| 32 | 16, 31 | jaoi 718 |
. . . . . . 7
|
| 33 | 8, 32 | sylbi 121 |
. . . . . 6
|
| 34 | pm2.27 40 |
. . . . . 6
| |
| 35 | 33, 34 | syl 14 |
. . . . 5
|
| 36 | 35 | imp 124 |
. . . 4
|
| 37 | 3, 36 | sylan2br 288 |
. . 3
|
| 38 | 37 | ralimiaa 2568 |
. 2
|
| 39 | 10, 25, 4 | acexmidlem1 5940 |
. 2
|
| 40 | 38, 39 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iota 5232 df-riota 5899 |
| This theorem is referenced by: acexmidlemv 5942 |
| Copyright terms: Public domain | W3C validator |