ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem2 Unicode version

Theorem acexmidlem2 5887
Description: Lemma for acexmid 5889. This builds on acexmidlem1 5886 by noting that every element of  C is inhabited.

(Note that  y is not quite a function in the df-fun 5232 sense because it uses ordered pairs as described in opthreg 4569 rather than df-op 3615).

The set  A is also found in onsucelsucexmidlem 4542.

(Contributed by Jim Kingdon, 5-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlem2  |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
Distinct variable groups:    x, y, z, w, v, u, A   
x, B, y, z, w, v, u    x, C, y, z, w, v, u    ph, x, y, z, w, v, u

Proof of Theorem acexmidlem2
StepHypRef Expression
1 df-ral 2472 . . . . 5  |-  ( A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. w ( w  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2 19.23v 1893 . . . . 5  |-  ( A. w ( w  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )  <->  ( E. w  w  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
31, 2bitr2i 185 . . . 4  |-  ( ( E. w  w  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )  <->  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
4 acexmidlem.c . . . . . . . . 9  |-  C  =  { A ,  B }
54eleq2i 2255 . . . . . . . 8  |-  ( z  e.  C  <->  z  e.  { A ,  B }
)
6 vex 2754 . . . . . . . . 9  |-  z  e. 
_V
76elpr 3627 . . . . . . . 8  |-  ( z  e.  { A ,  B }  <->  ( z  =  A  \/  z  =  B ) )
85, 7bitri 184 . . . . . . 7  |-  ( z  e.  C  <->  ( z  =  A  \/  z  =  B ) )
9 onsucelsucexmidlem1 4541 . . . . . . . . . . 11  |-  (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
10 acexmidlem.a . . . . . . . . . . 11  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
119, 10eleqtrri 2264 . . . . . . . . . 10  |-  (/)  e.  A
12 elex2 2767 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  E. w  w  e.  A )
1311, 12ax-mp 5 . . . . . . . . 9  |-  E. w  w  e.  A
14 eleq2 2252 . . . . . . . . . 10  |-  ( z  =  A  ->  (
w  e.  z  <->  w  e.  A ) )
1514exbidv 1835 . . . . . . . . 9  |-  ( z  =  A  ->  ( E. w  w  e.  z 
<->  E. w  w  e.  A ) )
1613, 15mpbiri 168 . . . . . . . 8  |-  ( z  =  A  ->  E. w  w  e.  z )
17 p0ex 4202 . . . . . . . . . . . . 13  |-  { (/) }  e.  _V
1817prid2 3713 . . . . . . . . . . . 12  |-  { (/) }  e.  { (/) ,  { (/)
} }
19 eqid 2188 . . . . . . . . . . . . 13  |-  { (/) }  =  { (/) }
2019orci 732 . . . . . . . . . . . 12  |-  ( {
(/) }  =  { (/)
}  \/  ph )
21 eqeq1 2195 . . . . . . . . . . . . . 14  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
2221orbi1d 792 . . . . . . . . . . . . 13  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  ph )  <->  ( { (/) }  =  { (/)
}  \/  ph )
) )
2322elrab 2907 . . . . . . . . . . . 12  |-  ( {
(/) }  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  <->  ( { (/)
}  e.  { (/) ,  { (/) } }  /\  ( { (/) }  =  { (/)
}  \/  ph )
) )
2418, 20, 23mpbir2an 943 . . . . . . . . . . 11  |-  { (/) }  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
25 acexmidlem.b . . . . . . . . . . 11  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
2624, 25eleqtrri 2264 . . . . . . . . . 10  |-  { (/) }  e.  B
27 elex2 2767 . . . . . . . . . 10  |-  ( {
(/) }  e.  B  ->  E. w  w  e.  B )
2826, 27ax-mp 5 . . . . . . . . 9  |-  E. w  w  e.  B
29 eleq2 2252 . . . . . . . . . 10  |-  ( z  =  B  ->  (
w  e.  z  <->  w  e.  B ) )
3029exbidv 1835 . . . . . . . . 9  |-  ( z  =  B  ->  ( E. w  w  e.  z 
<->  E. w  w  e.  B ) )
3128, 30mpbiri 168 . . . . . . . 8  |-  ( z  =  B  ->  E. w  w  e.  z )
3216, 31jaoi 717 . . . . . . 7  |-  ( ( z  =  A  \/  z  =  B )  ->  E. w  w  e.  z )
338, 32sylbi 121 . . . . . 6  |-  ( z  e.  C  ->  E. w  w  e.  z )
34 pm2.27 40 . . . . . 6  |-  ( E. w  w  e.  z  ->  ( ( E. w  w  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )  ->  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
) ) )
3533, 34syl 14 . . . . 5  |-  ( z  e.  C  ->  (
( E. w  w  e.  z  ->  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
3635imp 124 . . . 4  |-  ( ( z  e.  C  /\  ( E. w  w  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
373, 36sylan2br 288 . . 3  |-  ( ( z  e.  C  /\  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
3837ralimiaa 2551 . 2  |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  A. z  e.  C  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
) )
3910, 25, 4acexmidlem1 5886 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
4038, 39syl 14 1  |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1361    = wceq 1363   E.wex 1502    e. wcel 2159   A.wral 2467   E.wrex 2468   E!wreu 2469   {crab 2471   (/)c0 3436   {csn 3606   {cpr 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-uni 3824  df-tr 4116  df-iord 4380  df-on 4382  df-suc 4385  df-iota 5192  df-riota 5846
This theorem is referenced by:  acexmidlemv  5888
  Copyright terms: Public domain W3C validator