| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlem2 | Unicode version | ||
| Description: Lemma for acexmid 6000. This builds on acexmidlem1 5997 by noting that every
element of
(Note that
The set (Contributed by Jim Kingdon, 5-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 |
. . . . 5
| |
| 2 | 19.23v 1929 |
. . . . 5
| |
| 3 | 1, 2 | bitr2i 185 |
. . . 4
|
| 4 | acexmidlem.c |
. . . . . . . . 9
| |
| 5 | 4 | eleq2i 2296 |
. . . . . . . 8
|
| 6 | vex 2802 |
. . . . . . . . 9
| |
| 7 | 6 | elpr 3687 |
. . . . . . . 8
|
| 8 | 5, 7 | bitri 184 |
. . . . . . 7
|
| 9 | onsucelsucexmidlem1 4620 |
. . . . . . . . . . 11
| |
| 10 | acexmidlem.a |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | eleqtrri 2305 |
. . . . . . . . . 10
|
| 12 | elex2 2816 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
|
| 14 | eleq2 2293 |
. . . . . . . . . 10
| |
| 15 | 14 | exbidv 1871 |
. . . . . . . . 9
|
| 16 | 13, 15 | mpbiri 168 |
. . . . . . . 8
|
| 17 | p0ex 4272 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | prid2 3773 |
. . . . . . . . . . . 12
|
| 19 | eqid 2229 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | orci 736 |
. . . . . . . . . . . 12
|
| 21 | eqeq1 2236 |
. . . . . . . . . . . . . 14
| |
| 22 | 21 | orbi1d 796 |
. . . . . . . . . . . . 13
|
| 23 | 22 | elrab 2959 |
. . . . . . . . . . . 12
|
| 24 | 18, 20, 23 | mpbir2an 948 |
. . . . . . . . . . 11
|
| 25 | acexmidlem.b |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | eleqtrri 2305 |
. . . . . . . . . 10
|
| 27 | elex2 2816 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
|
| 29 | eleq2 2293 |
. . . . . . . . . 10
| |
| 30 | 29 | exbidv 1871 |
. . . . . . . . 9
|
| 31 | 28, 30 | mpbiri 168 |
. . . . . . . 8
|
| 32 | 16, 31 | jaoi 721 |
. . . . . . 7
|
| 33 | 8, 32 | sylbi 121 |
. . . . . 6
|
| 34 | pm2.27 40 |
. . . . . 6
| |
| 35 | 33, 34 | syl 14 |
. . . . 5
|
| 36 | 35 | imp 124 |
. . . 4
|
| 37 | 3, 36 | sylan2br 288 |
. . 3
|
| 38 | 37 | ralimiaa 2592 |
. 2
|
| 39 | 10, 25, 4 | acexmidlem1 5997 |
. 2
|
| 40 | 38, 39 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: acexmidlemv 5999 |
| Copyright terms: Public domain | W3C validator |