Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlem2 | Unicode version |
Description: Lemma for acexmid 5841. This builds on acexmidlem1 5838 by noting that every
element of is
inhabited.
(Note that is not quite a function in the df-fun 5190 sense because it uses ordered pairs as described in opthreg 4533 rather than df-op 3585). The set is also found in onsucelsucexmidlem 4506. (Contributed by Jim Kingdon, 5-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | |
acexmidlem.b | |
acexmidlem.c |
Ref | Expression |
---|---|
acexmidlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . . . . 5 | |
2 | 19.23v 1871 | . . . . 5 | |
3 | 1, 2 | bitr2i 184 | . . . 4 |
4 | acexmidlem.c | . . . . . . . . 9 | |
5 | 4 | eleq2i 2233 | . . . . . . . 8 |
6 | vex 2729 | . . . . . . . . 9 | |
7 | 6 | elpr 3597 | . . . . . . . 8 |
8 | 5, 7 | bitri 183 | . . . . . . 7 |
9 | onsucelsucexmidlem1 4505 | . . . . . . . . . . 11 | |
10 | acexmidlem.a | . . . . . . . . . . 11 | |
11 | 9, 10 | eleqtrri 2242 | . . . . . . . . . 10 |
12 | elex2 2742 | . . . . . . . . . 10 | |
13 | 11, 12 | ax-mp 5 | . . . . . . . . 9 |
14 | eleq2 2230 | . . . . . . . . . 10 | |
15 | 14 | exbidv 1813 | . . . . . . . . 9 |
16 | 13, 15 | mpbiri 167 | . . . . . . . 8 |
17 | p0ex 4167 | . . . . . . . . . . . . 13 | |
18 | 17 | prid2 3683 | . . . . . . . . . . . 12 |
19 | eqid 2165 | . . . . . . . . . . . . 13 | |
20 | 19 | orci 721 | . . . . . . . . . . . 12 |
21 | eqeq1 2172 | . . . . . . . . . . . . . 14 | |
22 | 21 | orbi1d 781 | . . . . . . . . . . . . 13 |
23 | 22 | elrab 2882 | . . . . . . . . . . . 12 |
24 | 18, 20, 23 | mpbir2an 932 | . . . . . . . . . . 11 |
25 | acexmidlem.b | . . . . . . . . . . 11 | |
26 | 24, 25 | eleqtrri 2242 | . . . . . . . . . 10 |
27 | elex2 2742 | . . . . . . . . . 10 | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 |
29 | eleq2 2230 | . . . . . . . . . 10 | |
30 | 29 | exbidv 1813 | . . . . . . . . 9 |
31 | 28, 30 | mpbiri 167 | . . . . . . . 8 |
32 | 16, 31 | jaoi 706 | . . . . . . 7 |
33 | 8, 32 | sylbi 120 | . . . . . 6 |
34 | pm2.27 40 | . . . . . 6 | |
35 | 33, 34 | syl 14 | . . . . 5 |
36 | 35 | imp 123 | . . . 4 |
37 | 3, 36 | sylan2br 286 | . . 3 |
38 | 37 | ralimiaa 2528 | . 2 |
39 | 10, 25, 4 | acexmidlem1 5838 | . 2 |
40 | 38, 39 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1341 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 wreu 2446 crab 2448 c0 3409 csn 3576 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iota 5153 df-riota 5798 |
This theorem is referenced by: acexmidlemv 5840 |
Copyright terms: Public domain | W3C validator |