Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrnmpt | Unicode version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ralrnmpt.1 | |
ralrnmpt.2 |
Ref | Expression |
---|---|
ralrnmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmpt.1 | . . . . 5 | |
2 | 1 | fnmpt 5314 | . . . 4 |
3 | dfsbcq 2953 | . . . . 5 | |
4 | 3 | ralrn 5623 | . . . 4 |
5 | 2, 4 | syl 14 | . . 3 |
6 | nfv 1516 | . . . . 5 | |
7 | nfsbc1v 2969 | . . . . 5 | |
8 | sbceq1a 2960 | . . . . 5 | |
9 | 6, 7, 8 | cbvral 2688 | . . . 4 |
10 | 9 | bicomi 131 | . . 3 |
11 | nfmpt1 4075 | . . . . . . 7 | |
12 | 1, 11 | nfcxfr 2305 | . . . . . 6 |
13 | nfcv 2308 | . . . . . 6 | |
14 | 12, 13 | nffv 5496 | . . . . 5 |
15 | nfv 1516 | . . . . 5 | |
16 | 14, 15 | nfsbc 2971 | . . . 4 |
17 | nfv 1516 | . . . 4 | |
18 | fveq2 5486 | . . . . 5 | |
19 | dfsbcq 2953 | . . . . 5 | |
20 | 18, 19 | syl 14 | . . . 4 |
21 | 16, 17, 20 | cbvral 2688 | . . 3 |
22 | 5, 10, 21 | 3bitr3g 221 | . 2 |
23 | 1 | fvmpt2 5569 | . . . . . 6 |
24 | dfsbcq 2953 | . . . . . 6 | |
25 | 23, 24 | syl 14 | . . . . 5 |
26 | ralrnmpt.2 | . . . . . . 7 | |
27 | 26 | sbcieg 2983 | . . . . . 6 |
28 | 27 | adantl 275 | . . . . 5 |
29 | 25, 28 | bitrd 187 | . . . 4 |
30 | 29 | ralimiaa 2528 | . . 3 |
31 | ralbi 2598 | . . 3 | |
32 | 30, 31 | syl 14 | . 2 |
33 | 22, 32 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wsbc 2951 cmpt 4043 crn 4605 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |