![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimiaa | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
ralimiaa.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
ralimiaa | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimiaa.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 114 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | ralimia 2437 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1439 ∀wral 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 |
This theorem depends on definitions: df-bi 116 df-ral 2365 |
This theorem is referenced by: ralrnmpt 5457 rexrnmpt 5458 acexmidlem2 5665 mptelixpg 6507 |
Copyright terms: Public domain | W3C validator |