| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralimiaa | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) | 
| Ref | Expression | 
|---|---|
| ralimiaa.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | 
| Ref | Expression | 
|---|---|
| ralimiaa | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralimiaa.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | 
| 3 | 2 | ralimia 2558 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: ralrnmpt 5704 rexrnmpt 5705 acexmidlem2 5919 mptelixpg 6793 trirec0 15688 | 
| Copyright terms: Public domain | W3C validator |