Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexrnmpt | Unicode version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ralrnmpt.1 | |
ralrnmpt.2 |
Ref | Expression |
---|---|
rexrnmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmpt.1 | . . . . 5 | |
2 | 1 | fnmpt 5324 | . . . 4 |
3 | dfsbcq 2957 | . . . . 5 | |
4 | 3 | rexrn 5633 | . . . 4 |
5 | 2, 4 | syl 14 | . . 3 |
6 | nfv 1521 | . . . . 5 | |
7 | nfsbc1v 2973 | . . . . 5 | |
8 | sbceq1a 2964 | . . . . 5 | |
9 | 6, 7, 8 | cbvrex 2693 | . . . 4 |
10 | 9 | bicomi 131 | . . 3 |
11 | nfmpt1 4082 | . . . . . . 7 | |
12 | 1, 11 | nfcxfr 2309 | . . . . . 6 |
13 | nfcv 2312 | . . . . . 6 | |
14 | 12, 13 | nffv 5506 | . . . . 5 |
15 | nfv 1521 | . . . . 5 | |
16 | 14, 15 | nfsbc 2975 | . . . 4 |
17 | nfv 1521 | . . . 4 | |
18 | fveq2 5496 | . . . . 5 | |
19 | 18 | sbceq1d 2960 | . . . 4 |
20 | 16, 17, 19 | cbvrex 2693 | . . 3 |
21 | 5, 10, 20 | 3bitr3g 221 | . 2 |
22 | 1 | fvmpt2 5579 | . . . . . 6 |
23 | 22 | sbceq1d 2960 | . . . . 5 |
24 | ralrnmpt.2 | . . . . . . 7 | |
25 | 24 | sbcieg 2987 | . . . . . 6 |
26 | 25 | adantl 275 | . . . . 5 |
27 | 23, 26 | bitrd 187 | . . . 4 |
28 | 27 | ralimiaa 2532 | . . 3 |
29 | pm5.32 450 | . . . . . 6 | |
30 | 29 | albii 1463 | . . . . 5 |
31 | exbi 1597 | . . . . 5 | |
32 | 30, 31 | sylbi 120 | . . . 4 |
33 | df-ral 2453 | . . . 4 | |
34 | df-rex 2454 | . . . . 5 | |
35 | df-rex 2454 | . . . . 5 | |
36 | 34, 35 | bibi12i 228 | . . . 4 |
37 | 32, 33, 36 | 3imtr4i 200 | . . 3 |
38 | 28, 37 | syl 14 | . 2 |
39 | 21, 38 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 wsbc 2955 cmpt 4050 crn 4612 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: txbas 13052 |
Copyright terms: Public domain | W3C validator |