ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia Unicode version

Theorem ralimia 2567
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
ralimia  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
21a2i 11 . 2  |-  ( ( x  e.  A  ->  ph )  ->  ( x  e.  A  ->  ps ) )
32ralimi2 2566 1  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472
This theorem depends on definitions:  df-bi 117  df-ral 2489
This theorem is referenced by:  ralimiaa  2568  ralimi  2569  r19.12  2612  rr19.3v  2912  rr19.28v  2913  ffvresb  5743  f1mpt  5840  ixpf  6807  exmidontri2or  7355  peano2nnnn  7966  peano5nnnn  8005  peano5nni  9039  peano2nn  9048  serf0  11663  baspartn  14522  tridceq  15995
  Copyright terms: Public domain W3C validator