ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimia Unicode version

Theorem ralimia 2548
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
ralimia  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
21a2i 11 . 2  |-  ( ( x  e.  A  ->  ph )  ->  ( x  e.  A  ->  ps ) )
32ralimi2 2547 1  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158   A.wral 2465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459
This theorem depends on definitions:  df-bi 117  df-ral 2470
This theorem is referenced by:  ralimiaa  2549  ralimi  2550  r19.12  2593  rr19.3v  2888  rr19.28v  2889  ffvresb  5692  f1mpt  5785  ixpf  6734  exmidontri2or  7256  peano2nnnn  7866  peano5nnnn  7905  peano5nni  8936  peano2nn  8945  serf0  11374  baspartn  13846  tridceq  15101
  Copyright terms: Public domain W3C validator