ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralinexa Unicode version

Theorem ralinexa 2521
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
ralinexa  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)

Proof of Theorem ralinexa
StepHypRef Expression
1 imnan 691 . . 3  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
21ralbii 2500 . 2  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  A. x  e.  A  -.  ( ph  /\  ps )
)
3 ralnex 2482 . 2  |-  ( A. x  e.  A  -.  ( ph  /\  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)
42, 3bitri 184 1  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wral 2472   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie2 1505  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  ntreq0  14300
  Copyright terms: Public domain W3C validator