ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntreq0 Unicode version

Theorem ntreq0 12333
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntreq0  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) ) )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem ntreq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4  |-  X  = 
U. J
21ntrval 12311 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
32eqeq1d 2149 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  (/)  <->  U. ( J  i^i  ~P S )  =  (/) ) )
4 notm0 3386 . . . 4  |-  ( -. 
E. y  y  e. 
U. ( J  i^i  ~P S )  <->  U. ( J  i^i  ~P S )  =  (/) )
5 ancom 264 . . . . . . . . . 10  |-  ( ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) )  <-> 
( x  e.  ( J  i^i  ~P S
)  /\  y  e.  x ) )
6 elin 3262 . . . . . . . . . . 11  |-  ( x  e.  ( J  i^i  ~P S )  <->  ( x  e.  J  /\  x  e.  ~P S ) )
76anbi1i 454 . . . . . . . . . 10  |-  ( ( x  e.  ( J  i^i  ~P S )  /\  y  e.  x
)  <->  ( ( x  e.  J  /\  x  e.  ~P S )  /\  y  e.  x )
)
8 anass 399 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  x  e.  ~P S )  /\  y  e.  x )  <->  ( x  e.  J  /\  (
x  e.  ~P S  /\  y  e.  x
) ) )
95, 7, 83bitri 205 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) )  <-> 
( x  e.  J  /\  ( x  e.  ~P S  /\  y  e.  x
) ) )
109exbii 1585 . . . . . . . 8  |-  ( E. x ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) )  <->  E. x
( x  e.  J  /\  ( x  e.  ~P S  /\  y  e.  x
) ) )
11 eluni 3745 . . . . . . . 8  |-  ( y  e.  U. ( J  i^i  ~P S )  <->  E. x ( y  e.  x  /\  x  e.  ( J  i^i  ~P S ) ) )
12 df-rex 2423 . . . . . . . 8  |-  ( E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x
)  <->  E. x ( x  e.  J  /\  (
x  e.  ~P S  /\  y  e.  x
) ) )
1310, 11, 123bitr4i 211 . . . . . . 7  |-  ( y  e.  U. ( J  i^i  ~P S )  <->  E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x
) )
1413exbii 1585 . . . . . 6  |-  ( E. y  y  e.  U. ( J  i^i  ~P S
)  <->  E. y E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x ) )
15 rexcom4 2712 . . . . . 6  |-  ( E. x  e.  J  E. y ( x  e. 
~P S  /\  y  e.  x )  <->  E. y E. x  e.  J  ( x  e.  ~P S  /\  y  e.  x
) )
16 19.42v 1879 . . . . . . 7  |-  ( E. y ( x  e. 
~P S  /\  y  e.  x )  <->  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
1716rexbii 2445 . . . . . 6  |-  ( E. x  e.  J  E. y ( x  e. 
~P S  /\  y  e.  x )  <->  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
1814, 15, 173bitr2i 207 . . . . 5  |-  ( E. y  y  e.  U. ( J  i^i  ~P S
)  <->  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x ) )
1918notbii 658 . . . 4  |-  ( -. 
E. y  y  e. 
U. ( J  i^i  ~P S )  <->  -.  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
204, 19bitr3i 185 . . 3  |-  ( U. ( J  i^i  ~P S
)  =  (/)  <->  -.  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
21 ralinexa 2465 . . 3  |-  ( A. x  e.  J  (
x  e.  ~P S  ->  -.  E. y  y  e.  x )  <->  -.  E. x  e.  J  ( x  e.  ~P S  /\  E. y  y  e.  x
) )
22 velpw 3520 . . . . 5  |-  ( x  e.  ~P S  <->  x  C_  S
)
23 notm0 3386 . . . . 5  |-  ( -. 
E. y  y  e.  x  <->  x  =  (/) )
2422, 23imbi12i 238 . . . 4  |-  ( ( x  e.  ~P S  ->  -.  E. y  y  e.  x )  <->  ( x  C_  S  ->  x  =  (/) ) )
2524ralbii 2444 . . 3  |-  ( A. x  e.  J  (
x  e.  ~P S  ->  -.  E. y  y  e.  x )  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) )
2620, 21, 253bitr2i 207 . 2  |-  ( U. ( J  i^i  ~P S
)  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) )
273, 26syl6bb 195 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418    i^i cin 3073    C_ wss 3074   (/)c0 3366   ~Pcpw 3513   U.cuni 3742   ` cfv 5129   Topctop 12196   intcnt 12294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-top 12197  df-ntr 12297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator