| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntreq0 | Unicode version | ||
| Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
| Ref | Expression |
|---|---|
| clscld.1 |
|
| Ref | Expression |
|---|---|
| ntreq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 |
. . . 4
| |
| 2 | 1 | ntrval 14657 |
. . 3
|
| 3 | 2 | eqeq1d 2215 |
. 2
|
| 4 | notm0 3485 |
. . . 4
| |
| 5 | ancom 266 |
. . . . . . . . . 10
| |
| 6 | elin 3360 |
. . . . . . . . . . 11
| |
| 7 | 6 | anbi1i 458 |
. . . . . . . . . 10
|
| 8 | anass 401 |
. . . . . . . . . 10
| |
| 9 | 5, 7, 8 | 3bitri 206 |
. . . . . . . . 9
|
| 10 | 9 | exbii 1629 |
. . . . . . . 8
|
| 11 | eluni 3859 |
. . . . . . . 8
| |
| 12 | df-rex 2491 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . . . . 7
|
| 14 | 13 | exbii 1629 |
. . . . . 6
|
| 15 | rexcom4 2797 |
. . . . . 6
| |
| 16 | 19.42v 1931 |
. . . . . . 7
| |
| 17 | 16 | rexbii 2514 |
. . . . . 6
|
| 18 | 14, 15, 17 | 3bitr2i 208 |
. . . . 5
|
| 19 | 18 | notbii 670 |
. . . 4
|
| 20 | 4, 19 | bitr3i 186 |
. . 3
|
| 21 | ralinexa 2534 |
. . 3
| |
| 22 | velpw 3628 |
. . . . 5
| |
| 23 | notm0 3485 |
. . . . 5
| |
| 24 | 22, 23 | imbi12i 239 |
. . . 4
|
| 25 | 24 | ralbii 2513 |
. . 3
|
| 26 | 20, 21, 25 | 3bitr2i 208 |
. 2
|
| 27 | 3, 26 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-top 14545 df-ntr 14643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |