| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntreq0 | Unicode version | ||
| Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
| Ref | Expression |
|---|---|
| clscld.1 |
|
| Ref | Expression |
|---|---|
| ntreq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 |
. . . 4
| |
| 2 | 1 | ntrval 14778 |
. . 3
|
| 3 | 2 | eqeq1d 2238 |
. 2
|
| 4 | notm0 3512 |
. . . 4
| |
| 5 | ancom 266 |
. . . . . . . . . 10
| |
| 6 | elin 3387 |
. . . . . . . . . . 11
| |
| 7 | 6 | anbi1i 458 |
. . . . . . . . . 10
|
| 8 | anass 401 |
. . . . . . . . . 10
| |
| 9 | 5, 7, 8 | 3bitri 206 |
. . . . . . . . 9
|
| 10 | 9 | exbii 1651 |
. . . . . . . 8
|
| 11 | eluni 3890 |
. . . . . . . 8
| |
| 12 | df-rex 2514 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . . . . 7
|
| 14 | 13 | exbii 1651 |
. . . . . 6
|
| 15 | rexcom4 2823 |
. . . . . 6
| |
| 16 | 19.42v 1953 |
. . . . . . 7
| |
| 17 | 16 | rexbii 2537 |
. . . . . 6
|
| 18 | 14, 15, 17 | 3bitr2i 208 |
. . . . 5
|
| 19 | 18 | notbii 672 |
. . . 4
|
| 20 | 4, 19 | bitr3i 186 |
. . 3
|
| 21 | ralinexa 2557 |
. . 3
| |
| 22 | velpw 3656 |
. . . . 5
| |
| 23 | notm0 3512 |
. . . . 5
| |
| 24 | 22, 23 | imbi12i 239 |
. . . 4
|
| 25 | 24 | ralbii 2536 |
. . 3
|
| 26 | 20, 21, 25 | 3bitr2i 208 |
. 2
|
| 27 | 3, 26 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-top 14666 df-ntr 14764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |