ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv Unicode version

Theorem rexralbidv 2556
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rexralbidv  |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ralbidv 2530 . 2  |-  ( ph  ->  ( A. y  e.  B  ps  <->  A. y  e.  B  ch )
)
32rexbidv 2531 1  |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2508   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  caucvgpr  7869  caucvgprpr  7899  caucvgsrlemgt1  7982  caucvgsrlemoffres  7987  axcaucvglemres  8086  cvg1nlemres  11496  rexfiuz  11500  resqrexlemgt0  11531  resqrexlemoverl  11532  resqrexlemglsq  11533  resqrexlemsqa  11535  resqrexlemex  11536  cau3lem  11625  caubnd2  11628  climi  11798  2clim  11812  ennnfonelemim  12995  mplelbascoe  14656  lmcvg  14891  lmss  14920  txlm  14953  metcnpi  15189  metcnpi2  15190  elcncf  15247  cncfi  15252  limcimo  15339  cnplimclemr  15343  limccoap  15352
  Copyright terms: Public domain W3C validator