| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexralbidv | Unicode version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| rexralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2506 |
. 2
|
| 3 | 2 | rexbidv 2507 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: caucvgpr 7797 caucvgprpr 7827 caucvgsrlemgt1 7910 caucvgsrlemoffres 7915 axcaucvglemres 8014 cvg1nlemres 11329 rexfiuz 11333 resqrexlemgt0 11364 resqrexlemoverl 11365 resqrexlemglsq 11366 resqrexlemsqa 11368 resqrexlemex 11369 cau3lem 11458 caubnd2 11461 climi 11631 2clim 11645 ennnfonelemim 12828 mplelbascoe 14487 lmcvg 14722 lmss 14751 txlm 14784 metcnpi 15020 metcnpi2 15021 elcncf 15078 cncfi 15083 limcimo 15170 cnplimclemr 15174 limccoap 15183 |
| Copyright terms: Public domain | W3C validator |