| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexralbidv | Unicode version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| rexralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2508 |
. 2
|
| 3 | 2 | rexbidv 2509 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: caucvgpr 7830 caucvgprpr 7860 caucvgsrlemgt1 7943 caucvgsrlemoffres 7948 axcaucvglemres 8047 cvg1nlemres 11411 rexfiuz 11415 resqrexlemgt0 11446 resqrexlemoverl 11447 resqrexlemglsq 11448 resqrexlemsqa 11450 resqrexlemex 11451 cau3lem 11540 caubnd2 11543 climi 11713 2clim 11727 ennnfonelemim 12910 mplelbascoe 14569 lmcvg 14804 lmss 14833 txlm 14866 metcnpi 15102 metcnpi2 15103 elcncf 15160 cncfi 15165 limcimo 15252 cnplimclemr 15256 limccoap 15265 |
| Copyright terms: Public domain | W3C validator |