![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexralbidv | Unicode version |
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexralbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ralbidv 2409 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexbidv 2410 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-4 1468 ax-17 1487 ax-ial 1495 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-ral 2393 df-rex 2394 |
This theorem is referenced by: caucvgpr 7432 caucvgprpr 7462 caucvgsrlemgt1 7531 caucvgsrlemoffres 7536 axcaucvglemres 7628 cvg1nlemres 10643 rexfiuz 10647 resqrexlemgt0 10678 resqrexlemoverl 10679 resqrexlemglsq 10680 resqrexlemsqa 10682 resqrexlemex 10683 cau3lem 10772 caubnd2 10775 climi 10942 2clim 10956 ennnfonelemim 11776 lmcvg 12222 lmss 12251 txlm 12284 metcnpi 12498 metcnpi2 12499 elcncf 12540 cncfi 12545 limcimo 12584 cnplimclemr 12588 |
Copyright terms: Public domain | W3C validator |