| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexralbidv | Unicode version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| rexralbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | ralbidv 2530 |
. 2
|
| 3 | 2 | rexbidv 2531 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: caucvgpr 7869 caucvgprpr 7899 caucvgsrlemgt1 7982 caucvgsrlemoffres 7987 axcaucvglemres 8086 cvg1nlemres 11496 rexfiuz 11500 resqrexlemgt0 11531 resqrexlemoverl 11532 resqrexlemglsq 11533 resqrexlemsqa 11535 resqrexlemex 11536 cau3lem 11625 caubnd2 11628 climi 11798 2clim 11812 ennnfonelemim 12995 mplelbascoe 14656 lmcvg 14891 lmss 14920 txlm 14953 metcnpi 15189 metcnpi2 15190 elcncf 15247 cncfi 15252 limcimo 15339 cnplimclemr 15343 limccoap 15352 |
| Copyright terms: Public domain | W3C validator |