ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv Unicode version

Theorem rexralbidv 2520
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rexralbidv  |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ralbidv 2494 . 2  |-  ( ph  ->  ( A. y  e.  B  ps  <->  A. y  e.  B  ch )
)
32rexbidv 2495 1  |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2472   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  caucvgpr  7744  caucvgprpr  7774  caucvgsrlemgt1  7857  caucvgsrlemoffres  7862  axcaucvglemres  7961  cvg1nlemres  11132  rexfiuz  11136  resqrexlemgt0  11167  resqrexlemoverl  11168  resqrexlemglsq  11169  resqrexlemsqa  11171  resqrexlemex  11172  cau3lem  11261  caubnd2  11264  climi  11433  2clim  11447  ennnfonelemim  12584  lmcvg  14396  lmss  14425  txlm  14458  metcnpi  14694  metcnpi2  14695  elcncf  14752  cncfi  14757  limcimo  14844  cnplimclemr  14848  limccoap  14857
  Copyright terms: Public domain W3C validator