ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv Unicode version

Theorem rexralbidv 2534
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rexralbidv  |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ralbidv 2508 . 2  |-  ( ph  ->  ( A. y  e.  B  ps  <->  A. y  e.  B  ch )
)
32rexbidv 2509 1  |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2486   E.wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2491  df-rex 2492
This theorem is referenced by:  caucvgpr  7830  caucvgprpr  7860  caucvgsrlemgt1  7943  caucvgsrlemoffres  7948  axcaucvglemres  8047  cvg1nlemres  11411  rexfiuz  11415  resqrexlemgt0  11446  resqrexlemoverl  11447  resqrexlemglsq  11448  resqrexlemsqa  11450  resqrexlemex  11451  cau3lem  11540  caubnd2  11543  climi  11713  2clim  11727  ennnfonelemim  12910  mplelbascoe  14569  lmcvg  14804  lmss  14833  txlm  14866  metcnpi  15102  metcnpi2  15103  elcncf  15160  cncfi  15165  limcimo  15252  cnplimclemr  15256  limccoap  15265
  Copyright terms: Public domain W3C validator