ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurex Unicode version

Theorem reurex 2678
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
Assertion
Ref Expression
reurex  |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )

Proof of Theorem reurex
StepHypRef Expression
1 reu5 2677 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
21simplbi 272 1  |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2444   E!wreu 2445   E*wrmo 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-rex 2449  df-reu 2450  df-rmo 2451
This theorem is referenced by:  reu3  2915  prsrriota  7725  elrealeu  7766  modprm0  12182  ivthinc  13221
  Copyright terms: Public domain W3C validator