ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurmo GIF version

Theorem reurmo 2680
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 2678 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 273 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2445  ∃!wreu 2446  ∃*wrmo 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-rex 2450  df-reu 2451  df-rmo 2452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator