Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurmo GIF version

Theorem reurmo 2648
 Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 2646 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
21simprbi 273 1 (∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∃wrex 2418  ∃!wreu 2419  ∃*wrmo 2420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-rex 2423  df-reu 2424  df-rmo 2425 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator