ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanaliim Unicode version

Theorem rexanaliim 2614
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Revised by Jim Kingdon, 18-Jan-2026.)
Assertion
Ref Expression
rexanaliim  |-  ( E. x  e.  A  (
ph  /\  -.  ps )  ->  -.  A. x  e.  A  ( ph  ->  ps ) )

Proof of Theorem rexanaliim
StepHypRef Expression
1 annimim 688 . . 3  |-  ( (
ph  /\  -.  ps )  ->  -.  ( ph  ->  ps ) )
21reximi 2605 . 2  |-  ( E. x  e.  A  (
ph  /\  -.  ps )  ->  E. x  e.  A  -.  ( ph  ->  ps ) )
3 rexnalim 2497 . 2  |-  ( E. x  e.  A  -.  ( ph  ->  ps )  ->  -.  A. x  e.  A  ( ph  ->  ps ) )
42, 3syl 14 1  |-  ( E. x  e.  A  (
ph  /\  -.  ps )  ->  -.  A. x  e.  A  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wral 2486   E.wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-ral 2491  df-rex 2492
This theorem is referenced by:  umgr2edg1  15964
  Copyright terms: Public domain W3C validator