| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexanaliim | GIF version | ||
| Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Revised by Jim Kingdon, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| rexanaliim | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annimim 688 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | reximi 2605 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) → ∃𝑥 ∈ 𝐴 ¬ (𝜑 → 𝜓)) |
| 3 | rexnalim 2497 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ (𝜑 → 𝜓) → ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wral 2486 ∃wrex 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: umgr2edg1 15964 |
| Copyright terms: Public domain | W3C validator |