| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.12 | Unicode version | ||
| Description: Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. . . 4
| |
| 2 | nfra1 2528 |
. . . 4
| |
| 3 | 1, 2 | nfrexw 2536 |
. . 3
|
| 4 | ax-1 6 |
. . 3
| |
| 5 | 3, 4 | ralrimi 2568 |
. 2
|
| 6 | rsp 2544 |
. . . . 5
| |
| 7 | 6 | com12 30 |
. . . 4
|
| 8 | 7 | reximdv 2598 |
. . 3
|
| 9 | 8 | ralimia 2558 |
. 2
|
| 10 | 5, 9 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: iuniin 3926 |
| Copyright terms: Public domain | W3C validator |