ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqtrrdv Unicode version

Theorem rexeqtrrdv 2739
Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
rexeqtrrdv.1  |-  ( ph  ->  E. x  e.  A  ps )
rexeqtrrdv.2  |-  ( ph  ->  B  =  A )
Assertion
Ref Expression
rexeqtrrdv  |-  ( ph  ->  E. x  e.  B  ps )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rexeqtrrdv
StepHypRef Expression
1 rexeqtrrdv.1 . 2  |-  ( ph  ->  E. x  e.  A  ps )
2 rexeqtrrdv.2 . . 3  |-  ( ph  ->  B  =  A )
32rexeqdv 2735 . 2  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. x  e.  A  ps )
)
41, 3mpbird 167 1  |-  ( ph  ->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator