| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbi1dv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleqd.1 |
|
| Ref | Expression |
|---|---|
| raleqbi1dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2702 |
. 2
| |
| 2 | raleqd.1 |
. . 3
| |
| 3 | 2 | ralbidv 2506 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: frforeq2 4393 weeq2 4405 peano5 4647 isoeq4 5875 exmidomni 7246 tapeq2 7367 pitonn 7963 peano1nnnn 7967 peano2nnnn 7968 peano5nnnn 8007 peano5nni 9041 1nn 9049 peano2nn 9050 dfuzi 9485 mhmpropd 13331 issubm 13337 isghm 13612 ghmeql 13636 iscmn 13662 dfrhm2 13949 islssm 14152 islssmg 14153 istopg 14504 isbasisg 14549 basis2 14553 eltg2 14558 ispsmet 14828 ismet 14849 isxmet 14850 metrest 15011 cncfval 15077 bj-indeq 15902 bj-nntrans 15924 |
| Copyright terms: Public domain | W3C validator |