Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqbi1dv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleqd.1 |
Ref | Expression |
---|---|
raleqbi1dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2665 | . 2 | |
2 | raleqd.1 | . . 3 | |
3 | 2 | ralbidv 2470 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: frforeq2 4330 weeq2 4342 peano5 4582 isoeq4 5783 exmidomni 7118 pitonn 7810 peano1nnnn 7814 peano2nnnn 7815 peano5nnnn 7854 peano5nni 8881 1nn 8889 peano2nn 8890 dfuzi 9322 mhmpropd 12689 issubm 12695 istopg 12791 isbasisg 12836 basis2 12840 eltg2 12847 ispsmet 13117 ismet 13138 isxmet 13139 metrest 13300 cncfval 13353 bj-indeq 13964 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |