Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqbi1dv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleqd.1 |
Ref | Expression |
---|---|
raleqbi1dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2661 | . 2 | |
2 | raleqd.1 | . . 3 | |
3 | 2 | ralbidv 2466 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: frforeq2 4323 weeq2 4335 peano5 4575 isoeq4 5772 exmidomni 7106 pitonn 7789 peano1nnnn 7793 peano2nnnn 7794 peano5nnnn 7833 peano5nni 8860 1nn 8868 peano2nn 8869 dfuzi 9301 istopg 12637 isbasisg 12682 basis2 12686 eltg2 12693 ispsmet 12963 ismet 12984 isxmet 12985 metrest 13146 cncfval 13199 bj-indeq 13811 bj-nntrans 13833 |
Copyright terms: Public domain | W3C validator |