| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbi1dv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleqd.1 |
|
| Ref | Expression |
|---|---|
| raleqbi1dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2693 |
. 2
| |
| 2 | raleqd.1 |
. . 3
| |
| 3 | 2 | ralbidv 2497 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: frforeq2 4381 weeq2 4393 peano5 4635 isoeq4 5854 exmidomni 7217 tapeq2 7336 pitonn 7932 peano1nnnn 7936 peano2nnnn 7937 peano5nnnn 7976 peano5nni 9010 1nn 9018 peano2nn 9019 dfuzi 9453 mhmpropd 13168 issubm 13174 isghm 13449 ghmeql 13473 iscmn 13499 dfrhm2 13786 islssm 13989 islssmg 13990 istopg 14319 isbasisg 14364 basis2 14368 eltg2 14373 ispsmet 14643 ismet 14664 isxmet 14665 metrest 14826 cncfval 14892 bj-indeq 15659 bj-nntrans 15681 |
| Copyright terms: Public domain | W3C validator |