ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbi1dv Unicode version

Theorem raleqbi1dv 2705
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
raleqd.1  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
raleqbi1dv  |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ps ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem raleqbi1dv
StepHypRef Expression
1 raleq 2693 . 2  |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
2 raleqd.1 . . 3  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
32ralbidv 2497 . 2  |-  ( A  =  B  ->  ( A. x  e.  B  ph  <->  A. x  e.  B  ps ) )
41, 3bitrd 188 1  |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  frforeq2  4381  weeq2  4393  peano5  4635  isoeq4  5854  exmidomni  7217  tapeq2  7336  pitonn  7932  peano1nnnn  7936  peano2nnnn  7937  peano5nnnn  7976  peano5nni  9010  1nn  9018  peano2nn  9019  dfuzi  9453  mhmpropd  13168  issubm  13174  isghm  13449  ghmeql  13473  iscmn  13499  dfrhm2  13786  islssm  13989  islssmg  13990  istopg  14319  isbasisg  14364  basis2  14368  eltg2  14373  ispsmet  14643  ismet  14664  isxmet  14665  metrest  14826  cncfval  14892  bj-indeq  15659  bj-nntrans  15681
  Copyright terms: Public domain W3C validator