Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqbi1dv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleqd.1 |
Ref | Expression |
---|---|
raleqbi1dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2652 | . 2 | |
2 | raleqd.1 | . . 3 | |
3 | 2 | ralbidv 2457 | . 2 |
4 | 1, 3 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 |
This theorem is referenced by: frforeq2 4305 weeq2 4317 peano5 4556 isoeq4 5751 exmidomni 7079 pitonn 7762 peano1nnnn 7766 peano2nnnn 7767 peano5nnnn 7806 peano5nni 8830 1nn 8838 peano2nn 8839 dfuzi 9268 istopg 12368 isbasisg 12413 basis2 12417 eltg2 12424 ispsmet 12694 ismet 12715 isxmet 12716 metrest 12877 cncfval 12930 bj-indeq 13475 bj-nntrans 13497 |
Copyright terms: Public domain | W3C validator |