| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbi1dv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleqd.1 |
|
| Ref | Expression |
|---|---|
| raleqbi1dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2693 |
. 2
| |
| 2 | raleqd.1 |
. . 3
| |
| 3 | 2 | ralbidv 2497 |
. 2
|
| 4 | 1, 3 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: frforeq2 4380 weeq2 4392 peano5 4634 isoeq4 5851 exmidomni 7208 tapeq2 7320 pitonn 7915 peano1nnnn 7919 peano2nnnn 7920 peano5nnnn 7959 peano5nni 8993 1nn 9001 peano2nn 9002 dfuzi 9436 mhmpropd 13098 issubm 13104 isghm 13373 ghmeql 13397 iscmn 13423 dfrhm2 13710 islssm 13913 islssmg 13914 istopg 14235 isbasisg 14280 basis2 14284 eltg2 14289 ispsmet 14559 ismet 14580 isxmet 14581 metrest 14742 cncfval 14808 bj-indeq 15575 bj-nntrans 15597 |
| Copyright terms: Public domain | W3C validator |