| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | Unicode version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 |
|
| Ref | Expression |
|---|---|
| rexeqdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 |
. 2
| |
| 2 | rexeq 2703 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 |
| This theorem is referenced by: rexeqtrdv 2711 rexeqtrrdv 2713 rexeqbidv 2719 rexeqbidva 2721 fnunirn 5836 cbvexfo 5855 fival 7072 nninfwlpoimlemg 7277 nninfwlpoimlemginf 7278 nninfwlpoim 7281 nninfinfwlpo 7282 genipv 7622 exfzdc 10369 infssuzex 10376 nninfdcex 10380 zproddc 11890 ennnfonelemrnh 12787 grppropd 13349 dvdsrpropdg 13909 znunit 14421 cnpfval 14667 plyval 15204 |
| Copyright terms: Public domain | W3C validator |