ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqdv Unicode version

Theorem rexeqdv 2656
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
Hypothesis
Ref Expression
raleq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rexeqdv  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rexeqdv
StepHypRef Expression
1 raleq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 rexeq 2650 . 2  |-  ( A  =  B  ->  ( E. x  e.  A  ps 
<->  E. x  e.  B  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332   E.wrex 2433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438
This theorem is referenced by:  rexeqbidv  2662  rexeqbidva  2664  fnunirn  5708  cbvexfo  5727  fival  6903  genipv  7408  exfzdc  10117  zproddc  11453  infssuzex  11809  ennnfonelemrnh  12104  cnpfval  12542
  Copyright terms: Public domain W3C validator