Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexeqdv | Unicode version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
Ref | Expression |
---|---|
raleq1d.1 |
Ref | Expression |
---|---|
rexeqdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1d.1 | . 2 | |
2 | rexeq 2666 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 |
This theorem is referenced by: rexeqbidv 2678 rexeqbidva 2680 fnunirn 5746 cbvexfo 5765 fival 6947 nninfwlpoimlemg 7151 nninfwlpoimlemginf 7152 nninfwlpoim 7154 genipv 7471 exfzdc 10196 zproddc 11542 infssuzex 11904 nninfdcex 11908 ennnfonelemrnh 12371 grppropd 12724 cnpfval 12989 |
Copyright terms: Public domain | W3C validator |