ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqdv Unicode version

Theorem rexeqdv 2735
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
Hypothesis
Ref Expression
raleq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rexeqdv  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rexeqdv
StepHypRef Expression
1 raleq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 rexeq 2729 . 2  |-  ( A  =  B  ->  ( E. x  e.  A  ps 
<->  E. x  e.  B  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  rexeqtrdv  2737  rexeqtrrdv  2739  rexeqbidv  2745  rexeqbidva  2747  fnunirn  5891  cbvexfo  5910  fival  7137  nninfwlpoimlemg  7342  nninfwlpoimlemginf  7343  nninfwlpoim  7346  nninfinfwlpo  7347  genipv  7696  exfzdc  10446  infssuzex  10453  nninfdcex  10457  zproddc  12090  ennnfonelemrnh  12987  grppropd  13550  dvdsrpropdg  14111  znunit  14623  cnpfval  14869  plyval  15406  uhgrvtxedgiedgb  15941  wlkvtxedg  16074
  Copyright terms: Public domain W3C validator