| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | Unicode version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 |
|
| Ref | Expression |
|---|---|
| rexeqdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 |
. 2
| |
| 2 | rexeq 2729 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: rexeqtrdv 2737 rexeqtrrdv 2739 rexeqbidv 2745 rexeqbidva 2747 fnunirn 5891 cbvexfo 5910 fival 7137 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 nninfwlpoim 7346 nninfinfwlpo 7347 genipv 7696 exfzdc 10446 infssuzex 10453 nninfdcex 10457 zproddc 12090 ennnfonelemrnh 12987 grppropd 13550 dvdsrpropdg 14111 znunit 14623 cnpfval 14869 plyval 15406 uhgrvtxedgiedgb 15941 wlkvtxedg 16074 |
| Copyright terms: Public domain | W3C validator |