| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | Unicode version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 |
|
| Ref | Expression |
|---|---|
| rexeqdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 |
. 2
| |
| 2 | rexeq 2706 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 |
| This theorem is referenced by: rexeqtrdv 2714 rexeqtrrdv 2716 rexeqbidv 2722 rexeqbidva 2724 fnunirn 5859 cbvexfo 5878 fival 7098 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 nninfwlpoim 7307 nninfinfwlpo 7308 genipv 7657 exfzdc 10406 infssuzex 10413 nninfdcex 10417 zproddc 12005 ennnfonelemrnh 12902 grppropd 13464 dvdsrpropdg 14024 znunit 14536 cnpfval 14782 plyval 15319 uhgrvtxedgiedgb 15847 |
| Copyright terms: Public domain | W3C validator |