ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqdv Unicode version

Theorem rexeqdv 2569
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
Hypothesis
Ref Expression
raleq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rexeqdv  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rexeqdv
StepHypRef Expression
1 raleq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 rexeq 2563 . 2  |-  ( A  =  B  ->  ( E. x  e.  A  ps 
<->  E. x  e.  B  ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289   E.wrex 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365
This theorem is referenced by:  rexeqbidv  2575  rexeqbidva  2577  fnunirn  5538  cbvexfo  5557  genipv  7058  exfzdc  9639  infssuzex  11210
  Copyright terms: Public domain W3C validator