| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | Unicode version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 |
|
| Ref | Expression |
|---|---|
| rexeqdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 |
. 2
| |
| 2 | rexeq 2694 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: rexeqtrdv 2702 rexeqtrrdv 2704 rexeqbidv 2710 rexeqbidva 2712 fnunirn 5814 cbvexfo 5833 fival 7036 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 nninfwlpoim 7244 genipv 7576 exfzdc 10316 infssuzex 10323 nninfdcex 10327 zproddc 11744 ennnfonelemrnh 12633 grppropd 13149 dvdsrpropdg 13703 znunit 14215 cnpfval 14431 plyval 14968 |
| Copyright terms: Public domain | W3C validator |