| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reximssdv | Unicode version | ||
| Description: Derivation of a
restricted existential quantification over a subset (the
       second hypothesis implies  | 
| Ref | Expression | 
|---|---|
| reximssdv.1 | 
 | 
| reximssdv.2 | 
 | 
| reximssdv.3 | 
 | 
| Ref | Expression | 
|---|---|
| reximssdv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reximssdv.1 | 
. 2
 | |
| 2 | reximssdv.2 | 
. . . . 5
 | |
| 3 | reximssdv.3 | 
. . . . 5
 | |
| 4 | 2, 3 | jca 306 | 
. . . 4
 | 
| 5 | 4 | ex 115 | 
. . 3
 | 
| 6 | 5 | reximdv2 2596 | 
. 2
 | 
| 7 | 1, 6 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-rex 2481 | 
| This theorem is referenced by: suplocexprlemrl 7784 neissex 14401 iscnp4 14454 suplociccex 14861 | 
| Copyright terms: Public domain | W3C validator |