Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximssdv | Unicode version |
Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies ), deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
reximssdv.1 | |
reximssdv.2 | |
reximssdv.3 |
Ref | Expression |
---|---|
reximssdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximssdv.1 | . 2 | |
2 | reximssdv.2 | . . . . 5 | |
3 | reximssdv.3 | . . . . 5 | |
4 | 2, 3 | jca 306 | . . . 4 |
5 | 4 | ex 115 | . . 3 |
6 | 5 | reximdv2 2574 | . 2 |
7 | 1, 6 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-rex 2459 |
This theorem is referenced by: suplocexprlemrl 7691 neissex 13236 iscnp4 13289 suplociccex 13674 |
Copyright terms: Public domain | W3C validator |