ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex Unicode version

Theorem suplociccex 13243
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7971 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1  |-  ( ph  ->  B  e.  RR )
suplocicc.2  |-  ( ph  ->  C  e.  RR )
suplocicc.bc  |-  ( ph  ->  B  <  C )
suplocicc.3  |-  ( ph  ->  A  C_  ( B [,] C ) )
suplocicc.m  |-  ( ph  ->  E. x  x  e.  A )
suplocicc.l  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
Assertion
Ref Expression
suplociccex  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    ph, x, y, z

Proof of Theorem suplociccex
Dummy variables  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3  |-  ( ph  ->  B  e.  RR )
2 suplocicc.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 suplocicc.bc . . 3  |-  ( ph  ->  B  <  C )
4 suplocicc.3 . . 3  |-  ( ph  ->  A  C_  ( B [,] C ) )
5 suplocicc.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
6 suplocicc.l . . 3  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
71, 2, 3, 4, 5, 6suplociccreex 13242 . 2  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
8 simprl 521 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  RR )
9 eleq1w 2227 . . . . . . . 8  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
109cbvexv 1906 . . . . . . 7  |-  ( E. x  x  e.  A  <->  E. u  u  e.  A
)
115, 10sylib 121 . . . . . 6  |-  ( ph  ->  E. u  u  e.  A )
1211adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  E. u  u  e.  A )
131ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR )
14 iccssre 9891 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  C_  RR )
151, 2, 14syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( B [,] C
)  C_  RR )
164, 15sstrd 3152 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1716ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  RR )
18 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  A )
1917, 18sseldd 3143 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  RR )
208adantr 274 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  x  e.  RR )
2113rexrd 7948 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR* )
222rexrd 7948 . . . . . . . 8  |-  ( ph  ->  C  e.  RR* )
2322ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  C  e.  RR* )
244ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  ( B [,] C
) )
2524, 18sseldd 3143 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  ( B [,] C
) )
26 iccgelb 9868 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  u  e.  ( B [,] C
) )  ->  B  <_  u )
2721, 23, 25, 26syl3anc 1228 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  u )
28 breq2 3986 . . . . . . . . 9  |-  ( y  =  u  ->  (
x  <  y  <->  x  <  u ) )
2928notbid 657 . . . . . . . 8  |-  ( y  =  u  ->  ( -.  x  <  y  <->  -.  x  <  u ) )
30 simprrl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  A  -.  x  <  y )
3130adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A. y  e.  A  -.  x  <  y )
3229, 31, 18rspcdva 2835 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  -.  x  <  u )
3319, 20, 32nltled 8019 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  <_  x )
3413, 19, 20, 27, 33letrd 8022 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  x )
3512, 34exlimddv 1886 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  B  <_  x )
36 simpl 108 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ph )
37 simprrr 530 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
388, 30, 373jca 1167 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
39 lttri3 7978 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4039adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4140eqsupti 6961 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  x ) )
4236, 38, 41sylc 62 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  =  x )
431rexrd 7948 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
4443adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  RR* )
4522adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  RR* )
464sselda 3142 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  ( B [,] C
) )
47 iccleub 9867 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  z  e.  ( B [,] C
) )  ->  z  <_  C )
4844, 45, 46, 47syl3anc 1228 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  <_  C )
4948ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. z  e.  A  z  <_  C )
507, 16, 2suprleubex 8849 . . . . . . 7  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. z  e.  A  z  <_  C ) )
5149, 50mpbird 166 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  <_  C )
5251adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  <_  C )
5342, 52eqbrtrrd 4006 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  <_  C )
548, 35, 533jca 1167 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  B  <_  x  /\  x  <_  C ) )
55 elicc2 9874 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
561, 2, 55syl2anc 409 . . . 4  |-  ( ph  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
5756adantr 274 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  ( B [,] C )  <->  ( x  e.  RR  /\  B  <_  x  /\  x  <_  C
) ) )
5854, 57mpbird 166 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  ( B [,] C
) )
59 ssralv 3206 . . . . . 6  |-  ( ( B [,] C ) 
C_  RR  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6015, 59syl 14 . . . . 5  |-  ( ph  ->  ( A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
6160adantr 274 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6237, 61mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
6330, 62jca 304 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
647, 58, 63reximssdv 2570 1  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   class class class wbr 3982  (class class class)co 5842   supcsup 6947   RRcr 7752   RR*cxr 7932    < clt 7933    <_ cle 7934   [,]cicc 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-icc 9831  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  dedekindicclemlub  13247
  Copyright terms: Public domain W3C validator