ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex Unicode version

Theorem suplociccex 14779
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8092 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1  |-  ( ph  ->  B  e.  RR )
suplocicc.2  |-  ( ph  ->  C  e.  RR )
suplocicc.bc  |-  ( ph  ->  B  <  C )
suplocicc.3  |-  ( ph  ->  A  C_  ( B [,] C ) )
suplocicc.m  |-  ( ph  ->  E. x  x  e.  A )
suplocicc.l  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
Assertion
Ref Expression
suplociccex  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    ph, x, y, z

Proof of Theorem suplociccex
Dummy variables  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3  |-  ( ph  ->  B  e.  RR )
2 suplocicc.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 suplocicc.bc . . 3  |-  ( ph  ->  B  <  C )
4 suplocicc.3 . . 3  |-  ( ph  ->  A  C_  ( B [,] C ) )
5 suplocicc.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
6 suplocicc.l . . 3  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
71, 2, 3, 4, 5, 6suplociccreex 14778 . 2  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
8 simprl 529 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  RR )
9 eleq1w 2254 . . . . . . . 8  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
109cbvexv 1930 . . . . . . 7  |-  ( E. x  x  e.  A  <->  E. u  u  e.  A
)
115, 10sylib 122 . . . . . 6  |-  ( ph  ->  E. u  u  e.  A )
1211adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  E. u  u  e.  A )
131ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR )
14 iccssre 10021 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  C_  RR )
151, 2, 14syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( B [,] C
)  C_  RR )
164, 15sstrd 3189 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1716ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  RR )
18 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  A )
1917, 18sseldd 3180 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  RR )
208adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  x  e.  RR )
2113rexrd 8069 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR* )
222rexrd 8069 . . . . . . . 8  |-  ( ph  ->  C  e.  RR* )
2322ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  C  e.  RR* )
244ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  ( B [,] C
) )
2524, 18sseldd 3180 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  ( B [,] C
) )
26 iccgelb 9998 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  u  e.  ( B [,] C
) )  ->  B  <_  u )
2721, 23, 25, 26syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  u )
28 breq2 4033 . . . . . . . . 9  |-  ( y  =  u  ->  (
x  <  y  <->  x  <  u ) )
2928notbid 668 . . . . . . . 8  |-  ( y  =  u  ->  ( -.  x  <  y  <->  -.  x  <  u ) )
30 simprrl 539 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  A  -.  x  <  y )
3130adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A. y  e.  A  -.  x  <  y )
3229, 31, 18rspcdva 2869 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  -.  x  <  u )
3319, 20, 32nltled 8140 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  <_  x )
3413, 19, 20, 27, 33letrd 8143 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  x )
3512, 34exlimddv 1910 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  B  <_  x )
36 simpl 109 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ph )
37 simprrr 540 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
388, 30, 373jca 1179 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
39 lttri3 8099 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4039adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4140eqsupti 7055 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  x ) )
4236, 38, 41sylc 62 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  =  x )
431rexrd 8069 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
4443adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  RR* )
4522adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  RR* )
464sselda 3179 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  ( B [,] C
) )
47 iccleub 9997 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  z  e.  ( B [,] C
) )  ->  z  <_  C )
4844, 45, 46, 47syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  <_  C )
4948ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. z  e.  A  z  <_  C )
507, 16, 2suprleubex 8973 . . . . . . 7  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. z  e.  A  z  <_  C ) )
5149, 50mpbird 167 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  <_  C )
5251adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  <_  C )
5342, 52eqbrtrrd 4053 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  <_  C )
548, 35, 533jca 1179 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  B  <_  x  /\  x  <_  C ) )
55 elicc2 10004 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
561, 2, 55syl2anc 411 . . . 4  |-  ( ph  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
5756adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  ( B [,] C )  <->  ( x  e.  RR  /\  B  <_  x  /\  x  <_  C
) ) )
5854, 57mpbird 167 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  ( B [,] C
) )
59 ssralv 3243 . . . . . 6  |-  ( ( B [,] C ) 
C_  RR  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6015, 59syl 14 . . . . 5  |-  ( ph  ->  ( A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
6160adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6237, 61mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
6330, 62jca 306 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
647, 58, 63reximssdv 2598 1  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   class class class wbr 4029  (class class class)co 5918   supcsup 7041   RRcr 7871   RR*cxr 8053    < clt 8054    <_ cle 8055   [,]cicc 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-icc 9961  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  dedekindicclemlub  14783
  Copyright terms: Public domain W3C validator