| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplociccex | Unicode version | ||
| Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8147 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| suplocicc.1 |
|
| suplocicc.2 |
|
| suplocicc.bc |
|
| suplocicc.3 |
|
| suplocicc.m |
|
| suplocicc.l |
|
| Ref | Expression |
|---|---|
| suplociccex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocicc.1 |
. . 3
| |
| 2 | suplocicc.2 |
. . 3
| |
| 3 | suplocicc.bc |
. . 3
| |
| 4 | suplocicc.3 |
. . 3
| |
| 5 | suplocicc.m |
. . 3
| |
| 6 | suplocicc.l |
. . 3
| |
| 7 | 1, 2, 3, 4, 5, 6 | suplociccreex 15129 |
. 2
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | eleq1w 2266 |
. . . . . . . 8
| |
| 10 | 9 | cbvexv 1942 |
. . . . . . 7
|
| 11 | 5, 10 | sylib 122 |
. . . . . 6
|
| 12 | 11 | adantr 276 |
. . . . 5
|
| 13 | 1 | ad2antrr 488 |
. . . . . 6
|
| 14 | iccssre 10079 |
. . . . . . . . . 10
| |
| 15 | 1, 2, 14 | syl2anc 411 |
. . . . . . . . 9
|
| 16 | 4, 15 | sstrd 3203 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 17, 18 | sseldd 3194 |
. . . . . 6
|
| 20 | 8 | adantr 276 |
. . . . . 6
|
| 21 | 13 | rexrd 8124 |
. . . . . . 7
|
| 22 | 2 | rexrd 8124 |
. . . . . . . 8
|
| 23 | 22 | ad2antrr 488 |
. . . . . . 7
|
| 24 | 4 | ad2antrr 488 |
. . . . . . . 8
|
| 25 | 24, 18 | sseldd 3194 |
. . . . . . 7
|
| 26 | iccgelb 10056 |
. . . . . . 7
| |
| 27 | 21, 23, 25, 26 | syl3anc 1250 |
. . . . . 6
|
| 28 | breq2 4049 |
. . . . . . . . 9
| |
| 29 | 28 | notbid 669 |
. . . . . . . 8
|
| 30 | simprrl 539 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 29, 31, 18 | rspcdva 2882 |
. . . . . . 7
|
| 33 | 19, 20, 32 | nltled 8195 |
. . . . . 6
|
| 34 | 13, 19, 20, 27, 33 | letrd 8198 |
. . . . 5
|
| 35 | 12, 34 | exlimddv 1922 |
. . . 4
|
| 36 | simpl 109 |
. . . . . 6
| |
| 37 | simprrr 540 |
. . . . . . 7
| |
| 38 | 8, 30, 37 | 3jca 1180 |
. . . . . 6
|
| 39 | lttri3 8154 |
. . . . . . . 8
| |
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | 40 | eqsupti 7100 |
. . . . . 6
|
| 42 | 36, 38, 41 | sylc 62 |
. . . . 5
|
| 43 | 1 | rexrd 8124 |
. . . . . . . . . 10
|
| 44 | 43 | adantr 276 |
. . . . . . . . 9
|
| 45 | 22 | adantr 276 |
. . . . . . . . 9
|
| 46 | 4 | sselda 3193 |
. . . . . . . . 9
|
| 47 | iccleub 10055 |
. . . . . . . . 9
| |
| 48 | 44, 45, 46, 47 | syl3anc 1250 |
. . . . . . . 8
|
| 49 | 48 | ralrimiva 2579 |
. . . . . . 7
|
| 50 | 7, 16, 2 | suprleubex 9029 |
. . . . . . 7
|
| 51 | 49, 50 | mpbird 167 |
. . . . . 6
|
| 52 | 51 | adantr 276 |
. . . . 5
|
| 53 | 42, 52 | eqbrtrrd 4069 |
. . . 4
|
| 54 | 8, 35, 53 | 3jca 1180 |
. . 3
|
| 55 | elicc2 10062 |
. . . . 5
| |
| 56 | 1, 2, 55 | syl2anc 411 |
. . . 4
|
| 57 | 56 | adantr 276 |
. . 3
|
| 58 | 54, 57 | mpbird 167 |
. 2
|
| 59 | ssralv 3257 |
. . . . . 6
| |
| 60 | 15, 59 | syl 14 |
. . . . 5
|
| 61 | 60 | adantr 276 |
. . . 4
|
| 62 | 37, 61 | mpd 13 |
. . 3
|
| 63 | 30, 62 | jca 306 |
. 2
|
| 64 | 7, 58, 63 | reximssdv 2610 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 ax-pre-suploc 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-rp 9778 df-icc 10019 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 |
| This theorem is referenced by: dedekindicclemlub 15134 |
| Copyright terms: Public domain | W3C validator |