| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplociccex | Unicode version | ||
| Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8116 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.) |
| Ref | Expression |
|---|---|
| suplocicc.1 |
|
| suplocicc.2 |
|
| suplocicc.bc |
|
| suplocicc.3 |
|
| suplocicc.m |
|
| suplocicc.l |
|
| Ref | Expression |
|---|---|
| suplociccex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplocicc.1 |
. . 3
| |
| 2 | suplocicc.2 |
. . 3
| |
| 3 | suplocicc.bc |
. . 3
| |
| 4 | suplocicc.3 |
. . 3
| |
| 5 | suplocicc.m |
. . 3
| |
| 6 | suplocicc.l |
. . 3
| |
| 7 | 1, 2, 3, 4, 5, 6 | suplociccreex 14944 |
. 2
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | eleq1w 2257 |
. . . . . . . 8
| |
| 10 | 9 | cbvexv 1933 |
. . . . . . 7
|
| 11 | 5, 10 | sylib 122 |
. . . . . 6
|
| 12 | 11 | adantr 276 |
. . . . 5
|
| 13 | 1 | ad2antrr 488 |
. . . . . 6
|
| 14 | iccssre 10047 |
. . . . . . . . . 10
| |
| 15 | 1, 2, 14 | syl2anc 411 |
. . . . . . . . 9
|
| 16 | 4, 15 | sstrd 3194 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 17, 18 | sseldd 3185 |
. . . . . 6
|
| 20 | 8 | adantr 276 |
. . . . . 6
|
| 21 | 13 | rexrd 8093 |
. . . . . . 7
|
| 22 | 2 | rexrd 8093 |
. . . . . . . 8
|
| 23 | 22 | ad2antrr 488 |
. . . . . . 7
|
| 24 | 4 | ad2antrr 488 |
. . . . . . . 8
|
| 25 | 24, 18 | sseldd 3185 |
. . . . . . 7
|
| 26 | iccgelb 10024 |
. . . . . . 7
| |
| 27 | 21, 23, 25, 26 | syl3anc 1249 |
. . . . . 6
|
| 28 | breq2 4038 |
. . . . . . . . 9
| |
| 29 | 28 | notbid 668 |
. . . . . . . 8
|
| 30 | simprrl 539 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 276 |
. . . . . . . 8
|
| 32 | 29, 31, 18 | rspcdva 2873 |
. . . . . . 7
|
| 33 | 19, 20, 32 | nltled 8164 |
. . . . . 6
|
| 34 | 13, 19, 20, 27, 33 | letrd 8167 |
. . . . 5
|
| 35 | 12, 34 | exlimddv 1913 |
. . . 4
|
| 36 | simpl 109 |
. . . . . 6
| |
| 37 | simprrr 540 |
. . . . . . 7
| |
| 38 | 8, 30, 37 | 3jca 1179 |
. . . . . 6
|
| 39 | lttri3 8123 |
. . . . . . . 8
| |
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | 40 | eqsupti 7071 |
. . . . . 6
|
| 42 | 36, 38, 41 | sylc 62 |
. . . . 5
|
| 43 | 1 | rexrd 8093 |
. . . . . . . . . 10
|
| 44 | 43 | adantr 276 |
. . . . . . . . 9
|
| 45 | 22 | adantr 276 |
. . . . . . . . 9
|
| 46 | 4 | sselda 3184 |
. . . . . . . . 9
|
| 47 | iccleub 10023 |
. . . . . . . . 9
| |
| 48 | 44, 45, 46, 47 | syl3anc 1249 |
. . . . . . . 8
|
| 49 | 48 | ralrimiva 2570 |
. . . . . . 7
|
| 50 | 7, 16, 2 | suprleubex 8998 |
. . . . . . 7
|
| 51 | 49, 50 | mpbird 167 |
. . . . . 6
|
| 52 | 51 | adantr 276 |
. . . . 5
|
| 53 | 42, 52 | eqbrtrrd 4058 |
. . . 4
|
| 54 | 8, 35, 53 | 3jca 1179 |
. . 3
|
| 55 | elicc2 10030 |
. . . . 5
| |
| 56 | 1, 2, 55 | syl2anc 411 |
. . . 4
|
| 57 | 56 | adantr 276 |
. . 3
|
| 58 | 54, 57 | mpbird 167 |
. 2
|
| 59 | ssralv 3248 |
. . . . . 6
| |
| 60 | 15, 59 | syl 14 |
. . . . 5
|
| 61 | 60 | adantr 276 |
. . . 4
|
| 62 | 37, 61 | mpd 13 |
. . 3
|
| 63 | 30, 62 | jca 306 |
. 2
|
| 64 | 7, 58, 63 | reximssdv 2601 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-icc 9987 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 |
| This theorem is referenced by: dedekindicclemlub 14949 |
| Copyright terms: Public domain | W3C validator |