ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex Unicode version

Theorem suplociccex 12811
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7861 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1  |-  ( ph  ->  B  e.  RR )
suplocicc.2  |-  ( ph  ->  C  e.  RR )
suplocicc.bc  |-  ( ph  ->  B  <  C )
suplocicc.3  |-  ( ph  ->  A  C_  ( B [,] C ) )
suplocicc.m  |-  ( ph  ->  E. x  x  e.  A )
suplocicc.l  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
Assertion
Ref Expression
suplociccex  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    ph, x, y, z

Proof of Theorem suplociccex
Dummy variables  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3  |-  ( ph  ->  B  e.  RR )
2 suplocicc.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 suplocicc.bc . . 3  |-  ( ph  ->  B  <  C )
4 suplocicc.3 . . 3  |-  ( ph  ->  A  C_  ( B [,] C ) )
5 suplocicc.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
6 suplocicc.l . . 3  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
71, 2, 3, 4, 5, 6suplociccreex 12810 . 2  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
8 simprl 521 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  RR )
9 eleq1w 2201 . . . . . . . 8  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
109cbvexv 1891 . . . . . . 7  |-  ( E. x  x  e.  A  <->  E. u  u  e.  A
)
115, 10sylib 121 . . . . . 6  |-  ( ph  ->  E. u  u  e.  A )
1211adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  E. u  u  e.  A )
131ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR )
14 iccssre 9768 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  C_  RR )
151, 2, 14syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( B [,] C
)  C_  RR )
164, 15sstrd 3112 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1716ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  RR )
18 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  A )
1917, 18sseldd 3103 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  RR )
208adantr 274 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  x  e.  RR )
2113rexrd 7839 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR* )
222rexrd 7839 . . . . . . . 8  |-  ( ph  ->  C  e.  RR* )
2322ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  C  e.  RR* )
244ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  ( B [,] C
) )
2524, 18sseldd 3103 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  ( B [,] C
) )
26 iccgelb 9745 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  u  e.  ( B [,] C
) )  ->  B  <_  u )
2721, 23, 25, 26syl3anc 1217 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  u )
28 breq2 3941 . . . . . . . . 9  |-  ( y  =  u  ->  (
x  <  y  <->  x  <  u ) )
2928notbid 657 . . . . . . . 8  |-  ( y  =  u  ->  ( -.  x  <  y  <->  -.  x  <  u ) )
30 simprrl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  A  -.  x  <  y )
3130adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A. y  e.  A  -.  x  <  y )
3229, 31, 18rspcdva 2798 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  -.  x  <  u )
3319, 20, 32nltled 7907 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  <_  x )
3413, 19, 20, 27, 33letrd 7910 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  x )
3512, 34exlimddv 1871 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  B  <_  x )
36 simpl 108 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ph )
37 simprrr 530 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
388, 30, 373jca 1162 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
39 lttri3 7868 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4039adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4140eqsupti 6891 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  x ) )
4236, 38, 41sylc 62 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  =  x )
431rexrd 7839 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
4443adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  RR* )
4522adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  RR* )
464sselda 3102 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  ( B [,] C
) )
47 iccleub 9744 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  z  e.  ( B [,] C
) )  ->  z  <_  C )
4844, 45, 46, 47syl3anc 1217 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  <_  C )
4948ralrimiva 2508 . . . . . . 7  |-  ( ph  ->  A. z  e.  A  z  <_  C )
507, 16, 2suprleubex 8736 . . . . . . 7  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. z  e.  A  z  <_  C ) )
5149, 50mpbird 166 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  <_  C )
5251adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  <_  C )
5342, 52eqbrtrrd 3960 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  <_  C )
548, 35, 533jca 1162 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  B  <_  x  /\  x  <_  C ) )
55 elicc2 9751 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
561, 2, 55syl2anc 409 . . . 4  |-  ( ph  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
5756adantr 274 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  ( B [,] C )  <->  ( x  e.  RR  /\  B  <_  x  /\  x  <_  C
) ) )
5854, 57mpbird 166 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  ( B [,] C
) )
59 ssralv 3166 . . . . . 6  |-  ( ( B [,] C ) 
C_  RR  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6015, 59syl 14 . . . . 5  |-  ( ph  ->  ( A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
6160adantr 274 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6237, 61mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
6330, 62jca 304 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
647, 58, 63reximssdv 2539 1  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   class class class wbr 3937  (class class class)co 5782   supcsup 6877   RRcr 7643   RR*cxr 7823    < clt 7824    <_ cle 7825   [,]cicc 9704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-icc 9708  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  dedekindicclemlub  12815
  Copyright terms: Public domain W3C validator