ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex Unicode version

Theorem suplociccex 14861
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8099 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1  |-  ( ph  ->  B  e.  RR )
suplocicc.2  |-  ( ph  ->  C  e.  RR )
suplocicc.bc  |-  ( ph  ->  B  <  C )
suplocicc.3  |-  ( ph  ->  A  C_  ( B [,] C ) )
suplocicc.m  |-  ( ph  ->  E. x  x  e.  A )
suplocicc.l  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
Assertion
Ref Expression
suplociccex  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    ph, x, y, z

Proof of Theorem suplociccex
Dummy variables  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3  |-  ( ph  ->  B  e.  RR )
2 suplocicc.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 suplocicc.bc . . 3  |-  ( ph  ->  B  <  C )
4 suplocicc.3 . . 3  |-  ( ph  ->  A  C_  ( B [,] C ) )
5 suplocicc.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
6 suplocicc.l . . 3  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
71, 2, 3, 4, 5, 6suplociccreex 14860 . 2  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
8 simprl 529 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  RR )
9 eleq1w 2257 . . . . . . . 8  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
109cbvexv 1933 . . . . . . 7  |-  ( E. x  x  e.  A  <->  E. u  u  e.  A
)
115, 10sylib 122 . . . . . 6  |-  ( ph  ->  E. u  u  e.  A )
1211adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  E. u  u  e.  A )
131ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR )
14 iccssre 10030 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  C_  RR )
151, 2, 14syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( B [,] C
)  C_  RR )
164, 15sstrd 3193 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1716ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  RR )
18 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  A )
1917, 18sseldd 3184 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  RR )
208adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  x  e.  RR )
2113rexrd 8076 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR* )
222rexrd 8076 . . . . . . . 8  |-  ( ph  ->  C  e.  RR* )
2322ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  C  e.  RR* )
244ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  ( B [,] C
) )
2524, 18sseldd 3184 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  ( B [,] C
) )
26 iccgelb 10007 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  u  e.  ( B [,] C
) )  ->  B  <_  u )
2721, 23, 25, 26syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  u )
28 breq2 4037 . . . . . . . . 9  |-  ( y  =  u  ->  (
x  <  y  <->  x  <  u ) )
2928notbid 668 . . . . . . . 8  |-  ( y  =  u  ->  ( -.  x  <  y  <->  -.  x  <  u ) )
30 simprrl 539 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  A  -.  x  <  y )
3130adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A. y  e.  A  -.  x  <  y )
3229, 31, 18rspcdva 2873 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  -.  x  <  u )
3319, 20, 32nltled 8147 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  <_  x )
3413, 19, 20, 27, 33letrd 8150 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  x )
3512, 34exlimddv 1913 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  B  <_  x )
36 simpl 109 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ph )
37 simprrr 540 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
388, 30, 373jca 1179 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
39 lttri3 8106 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4039adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4140eqsupti 7062 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  x ) )
4236, 38, 41sylc 62 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  =  x )
431rexrd 8076 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
4443adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  RR* )
4522adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  RR* )
464sselda 3183 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  ( B [,] C
) )
47 iccleub 10006 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  z  e.  ( B [,] C
) )  ->  z  <_  C )
4844, 45, 46, 47syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  <_  C )
4948ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. z  e.  A  z  <_  C )
507, 16, 2suprleubex 8981 . . . . . . 7  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. z  e.  A  z  <_  C ) )
5149, 50mpbird 167 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  <_  C )
5251adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  <_  C )
5342, 52eqbrtrrd 4057 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  <_  C )
548, 35, 533jca 1179 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  B  <_  x  /\  x  <_  C ) )
55 elicc2 10013 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
561, 2, 55syl2anc 411 . . . 4  |-  ( ph  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
5756adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  ( B [,] C )  <->  ( x  e.  RR  /\  B  <_  x  /\  x  <_  C
) ) )
5854, 57mpbird 167 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  ( B [,] C
) )
59 ssralv 3247 . . . . . 6  |-  ( ( B [,] C ) 
C_  RR  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6015, 59syl 14 . . . . 5  |-  ( ph  ->  ( A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
6160adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6237, 61mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
6330, 62jca 306 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
647, 58, 63reximssdv 2601 1  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4033  (class class class)co 5922   supcsup 7048   RRcr 7878   RR*cxr 8060    < clt 8061    <_ cle 8062   [,]cicc 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-icc 9970  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  dedekindicclemlub  14865
  Copyright terms: Public domain W3C validator